National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 2016

Single-sensor, cue-counting population density estimation: Average probability of detection of broadband clicks

Küsel, E.T., M. Siderius, and D.K. Mellinger

J. Acoust. Soc. Am., 140(3), 1894–1903, doi: 10.1121/1.4962753 (2016)


Odontocete echolocation clicks have been used as a preferred cue for density estimation using single-sensor data sets, requiring estimation of detection probability as a function of range. Many such clicks can be very broadband in nature, with 10-dB bandwidths of 20–40 kHz or more. Detection distances are not readily obtained from single-sensor data. Here, the average detection probability is estimated in a Monte Carlo simulation using the passive sonar equation along with transmission loss calculations to estimate the signal-to-noise ratio (SNR) of tens of thousands of click realizations. Continuous-wave (CW) analysis, i.e., single-frequency analysis, is inherent to basic forms of the passive sonar equation. Using CW analysis with the click's center frequency while disregarding its bandwidth has been shown to introduce bias into detection probabilities and hence to density estimates. In this study, the effects of highly broadband clicks on density estimates are further examined. The usage of transmission loss as an appropriate measure for calculating click SNR is also discussed. The main contributions from this research are (1) an alternative approach to estimate the average probability of detection of broadband clicks, and (2) understanding the effects of multipath clicks on population density estimates.



Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |