FY 2015 Core principles of the California Current Acidification Network: Linking chemistry, physics, and ecological effects McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, S. Cudd, R.A. Feely, I.W. Jefferds, E.B. Jewett, T. King, C.J. Langdon, S. McAfee, D. Pleschner-Steele, and B. Steele Oceanography, 28(2), 160–169, doi: 10.5670/oceanog.2015.39 (2015) Numerous monitoring efforts are underway to improve understanding of ocean acidification and its impacts on coastal environments, but there is a need to develop a coordinated approach that facilitates spatial and temporal comparisons of drivers and responses on a regional scale. Toward that goal, the California Current Acidification Network (C-CAN) held a series of workshops to develop a set of core principles for facilitating integration of ocean acidification monitoring efforts on the US West Coast. The recommended core principles include: (1) monitoring measurements should facilitate determination of aragonite saturation state (Ωarag) as the common currency of comparison, allowing a complete description of the inorganic carbon system; (2) maximum uncertainty of ±0.2 in the calculation of Ωarag is required to adequately link changes in ocean chemistry to changes in ecosystem function; (3) inclusion of a variety of monitoring platforms and levels of effort in the network will insure collection of high-frequency temporal data at fixed locations as well as spatial mapping across locations; (4) physical and chemical oceanographic monitoring should be linked with biological monitoring; and (5) the monitoring network should share data and make it accessible to a broad audience. Feature Publications | Outstanding Scientific Publications Contact Sandra Bigley | Help