National Oceanic and
Atmospheric Administration
United States Department of Commerce


FY 2012

A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem

Stabeno, P.J., E. Farley, N. Kachel, S. Moore, C. Mordy, J.M. Napp, J.E. Overland, A.I. Pinchuk, and M.F. Sigler

Deep-Sea Res. II, 65–70, 14–30, doi: 10.1016/j.dsr2.2012.02.019 (2012)

Sufficient oceanographic measurements have been made in recent years to describe the latitudinal variation in the physics of the eastern Bering Sea shelf and the potential impact of climate change on the species assemblages in the two ecosystems (north and south). Many of the predicted ecosystem changes will result from alterations in the timing and extent of sea ice. It is predicted that the sea ice in the northern Bering Sea will be less common in May, but will continue to be extensive through April. In contrast, the southern shelf will have, on average, much less sea ice than currently observed, but with large interannual and multiyear variability until at least 2050. Thus, even under current climate warming scenarios, bottom temperatures on the northern shelf will remain cold. Based on biophysical measurements, the southern and northern ecosystems were divided by a North-South Transition at ~60°N. The northern middle shelf was characterized by a freshwater lens at the surface, cold bottom temperatures, and a thicker pycnocline than found on the southern shelf. Subsurface phytoplankton blooms were common. In contrast, the southern shelf stratification was largely determined by temperature alone; the pycnocline was thin (often<3 m) and subsurface blooms were uncommon. Biological responses to climate warming could include greater north-south differences in zooplankton community structure, the transport of large Outer Shelf Domain crustacean zooplankton to the middle shelf, and the disappearance of two principal prey taxa (Calanus spp. and Thysanoessa spp.) of planktivorous fish, seabirds and whales. The response of commercially and ecologically important fish species is predicted to vary. Some species of fish (e.g., juvenile sockeye salmon, Oncorhynchus nerka) may expand their summer range into the northern Bering Sea; some (e.g., pink salmon, O. gorbuscha) may increase in abundance while still other species (e.g., walleye pollock and arrowtooth flounder; Theragra chalcogramma and Atheresthes stomias, respectively) are unlikely to become common in the north. The projected warming of the southern shelf will limit the distribution of arctic species (e.g., snow crab, Chionoecetes opilio) to the northern shelf and will likely permit expansion of subarctic species into the southern Bering Sea. The distribution and abundance of baleen whales will respond to shifts in prey availability; for instance, if prey are advected northward from the southeastern Bering Sea, an extension of range and an increase in seasonally migratory baleen whale numbers is anticipated. Thus, alteration of this ecosystem in response to climate change is expected to result in something other than a simple northward shift in the distribution of all species.

Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |