National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 1997

Seafloor eruptions and evolution of hydrothermal fluid chemistry

Butterfield, D.A., I.R. Jonasson, G.J. Massoth, R.A. Feely, K.K. Roe, R.E. Embley, J.F. Holden, R.E. McDuff, M.D. Lilley, and J.R. Delaney

Philos. Trans. Roy. Soc. Lond. A, 355, 369–386, doi: 10.1098/rsta.1997.0013 (1997)


A major challenge confronting geochemists is to relate the chemistry of vented hydrothermal fluids to the local or regional tectonic and volcanic state of mid-ocean ridges. After more than 15 years of sampling submarine hydrothermal fluids, a complex picture of spatial and temporal variability in temperature and composition is emerging. Recent time-series observations and sampling of ridge segments with confirmed recent volcanic eruptions (CoAxial and North Cleft on the Juan de Fuca ridge and 9-10°N on the East Pacific Rise) have created a first-order understanding of how hydrothermal systems respond to volcanic events on the seafloor. Phase separation and enhanced volatile fluxes are associated with volcanic eruptions, with vapor-dominated fluids predominating in the initial post-eruption period, followed in time by brine-dominated fluids, consistent with temporary storage of brine below the seafloor. Chemical data for CoAxial vents presented here are consistent with this evolution. Rapid changes in output and composition of hydrothermal fluids following volcanic events may have a profound effect on microbiological production, macrofaunal colonization, and hydrothermal heat and mass fluxes. Size and location of the heat source are critical in determining how fast heat is removed and whether sub-seafloor microbial production will flourish. CoAxial event plumes may be a direct result of dyking and eruption of lavas on the seafloor.




Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |