National Oceanic and
Atmospheric Administration
United States Department of Commerce


 

FY 1990

Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge

Feely, R.A., T.L. Geiselman, E.T. Baker, G.J. Massoth, and S.R. Hammond

J. Geophys. Res., 95(B8), 12,855–12,873, doi: 10.1029/JB095iB08p12855 (1990)


In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.




Feature Publications | Outstanding Scientific Publications

Contact Sandra Bigley |