Feature Publication Archive
Oceanography, Volume 36 (2-3) October 2023
Pacific Marine Environmental Laboratory: 50 Years of Innovative Research in Oceanography
Fifty years ago, NOAA created a new environmental research laboratory in Seattle with an initial focus on water quality in Puget Sound, and environmental studies of the Gulf of Alaska and Bering Sea.
Since then, the Pacific Marine Environmental Laboratory has evolved into one of the world's leading ocean research institutes, specializing in observing ocean conditions from tsunamis to changes in climate and ocean chemistry with the aid of innovative instrumentation and measurement strategies often developed by the lab.
To recognize PMEL's half-century of accomplishments, the... more »
Ballinger, T.J., J.E. Overland, M. Wang, J.E. Walsh, B. Brettschneider, R.L. Thoman, U.S. Bhatt, E. Hanna, I. Hanssen-Bauer, and S.-J. Kim (2023): Surface air temperature, in State of the Climate in 2022, The Arctic. Bull. Am. Meteorol. Soc., 104(9), S279–S281, doi: 10.1175/10.1175/BAMS-D-23-0079.1, View online at AMS (external link).
Benestad, R., R.L. Thoman, Jr., J.L. Cohen, J.E. Overland, E. Hanna, G.W.K. Moore, M. Rantanen, G.N. Petersen, and M. Webster (2023): 2022 extreme weather and climate events [Sidebar 5.1] , in State of the Climate in 2022. Bull. Am. Meteorol. Soc., 104(9), S285–S287, doi: 10.1175/10.1175/BAMS-D-23-0079.1, View online at AMS (external link).
Johnson, G.C., and R. Lumpkin (2023): Overview. In State of the Climate in 2022, Global Oceans. Bull. Am. Meteorol. Soc., 104(9), S152–S153, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
Johnson, G.C., J.M. Lyman, C. Atkinson, T. Boyer, L. Cheng, J. Gilson, M. Ishii, R. Locarnini, A. Mishonov, S.G. Purkey, J. Reagan, and K. Sato (2023): Ocean heat content. In State of the Climate in 2022, Global Oceans. Bull. Am. Meteorol. Soc., 104(9), S159–S162, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
Johnson, G.C., J. Reagan, J.M. Lyman, T. Boyer, C. Schmid, and R. Locarnini (2023): Salinity. In State of the Climate in 2022, Global Oceans. Bull. Am. Meteorol. Soc., 104(9), S163–S167, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
McPhaden, M.J. (2023): The 2020-22 Triple Dip La Niña, in State of the Climate in 2022, Global Oceans [Sidebar 3.1]. Bull. Am. Meteorol. Soc., 104(9), S157–S158, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
Sharp, J. (2023): Tracking global ocean oxygen content, in State of the Climate in 2022, Global Oceans [Sidebar 3.2]. Bull. Am. Meteorol. Soc., 104(9), S189–S190, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
Wanninkhof, R., J.A. Triñanes, P. Landschützer, R.A. Feely, and B.R. Carter (2023): Global ocean carbon cycle. In State of the Climate in 2022, Global Oceans. Bull. Am. Meteorol. Soc., 104(9), S191–S195, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
Wen, C., P.W. Stackhouse, J. Garg, P.P. Xie, L. Zhang, and M.F. Cronin (2023): Global ocean heat, freshwater, and momentum fluxes, in State of the Climate in 2022. Bull. Am. Meteorol. Soc., 104(9), S168–S172, doi: 10.1175/BAMS-D-23-0076.2, View online at AMS (external link).
The year 2022 was marked by unusual (though not unprecedented) disruptions in the climate system including a “triple-dip” La Niña nearly continuous from August 2020 through the end of 2022, extraordinary amount of precipitation over Antarctica in 2022 and the Hunga Tonga–Hunga Ha’apai underwater volcano eruption in January. Greenhouse gas concentrations, global sea... more »
Ballinger, T.J., J.E. Overland, R.L. Thoman, M. Wang, M.A. Webster, L.N. Boisvert, C.L. Parker, U.S. Bhatt, B. Brettschneider, E. Hanna, I. Hanssen-Bauer, S.-J. Kim, and J.E. Walsh (2022). Surface air temperature, in State of the Climate in 2021, The Arctic. Bull. Am. Meteorol. Soc., 103(8), S264–S267.
Meier, W. N., D. Perovich, S. Farrell, C. Haas, S. Hendricks, A. Petty, M. Webster, D. Divine, S. Gerland, L. Kaleschke, R. Ricker, A. Steer, X. Tian-Kunze, M. Tschudi, and K. Wood (2022). Sea ice, in State of the Climate in 2021”, The Arctic. Bull. Amer. Meteor. Soc., 103 (8), S270–S273.
Feely, R.A., and R. Wanninkhof (2022). Sidebar: IPCC AR6 Assessment of the role of the oceans in the carbon cycle. In State of the Climate in 2021, Global Oceans. Bull. Am. Meteorol. Soc., 103(8), S178-S179.
Johnson, G.C., and R. Lumpkin (2022). Overview. In State of the Climate in 2021, Global Oceans. Bull. Am. Meteorol. Soc., 103(8), S149.
Johnson, G.C., J.M. Lyman, T. Boyer, L. Cheng, J. Gilson, M. Ishii, R.E. Killick, and S.G. Purkey (2022). Ocean heat content. In State of the Climate in 2021, Global Oceans. Bull. Am. Meteorol. Soc., 103(8), S153-S157.
Johnson, G.C., J. Reagan, J.M. Lyman, T. Boyer, C. Schmid, and R. Locarnini (2022). Salinity. In State of the Climate in 2021, Global Oceans. Bull. Am. Meteorol. Soc., 103(8), S157-S162.
Greenhouse gas concentrations, global sea levels and ocean heat content reached record highs in 2021, according to the 32nd annual State of the Climate report, despite a double-dip La Niña event taking place in the Pacific Ocean.
Ocean climate change,
varies with La Niña, yet, ... more »
Johnson, G.C., and R. Lumpkin (2021): Overview. In State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc., 102 (8), S149–S150, https://doi.org/10.1175/ BAMS-D-21-0083.1.
Johnson, G.C., J.M. Lyman, T. Boyer, L. Cheng, J. Gilson, M. Ishii, R.E. Killick, and S.G. Purkey (2021): Ocean heat content. In State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc., 102 (8), S156–S159, https://doi.org/10.1175/ BAMS-D-21-0083.1.
Johnson, G.C., J. Reagan, J.M. Lyman, T. Boyer, C. Schmid, and R. Locarnini (2021): Salinity. In State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc., 102 (8), S159–S164, https://doi.org/10.1175/ BAMS-D-21-0083.1.
Alin, S.R., A.U. Collins, B.R. Carter, and R.A. Feely (2021): Ocean acidification status in Pacific Ocean surface seawater in 2020. In State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc., 102 (8), S184–S185, https://doi.org/10.1175/ BAMS-D-21-0083.1.
Feely, R.A., R. Wanninkhof, P. Landschützer, B.R. Carter, J.A. Triñanes, and C. Cosca (2021): Global ocean carbon cycle. In State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc., 102 (8), S185–S190, https://doi.org/10.1175/ BAMS-D-21-0083.1.
Tamsitt, V., S. Bushinsky, Z. Li, M. du Plessis, A. Foppert, S. Gille, S. Rintoul, E. Shadwick, A. Silvano, A. Sutton, S. Swart, B. Tilbrook, and N.L. Williams (2021): Southern Ocean. In State of the Climate in 2020. Bull. Am. Meteorol. Soc., 102 (8), S341–S345, https://doi.org/10.1175/BAMS-D-21-0081.1.
The 31st annual State of the Climate report confirmed that several markers such as sea level, ocean heat content, and permafrost in 2020 once again broke records set just one year prior. 2020 was also among the three warmest years in records dating to the mid-1800s, even with a cooling La Niña influence in the second half of the year. New high temperature records were set across the globe.
The report found that the... more »
Ray, S., S.A. Siedlecki, M.A. Alexander, N.A. Bond, and A.J. Hermann (2020): Drivers of subsurface temperature variability in the Northern California Current. J. Geophys. Res., 125(8), e2020JC016227. https://doi.org/10.1029/2020JC016227
The Washington/Oregon shelf, embedded in the Northern California Current System, is a productive habitat with important commercial fisheries. One of the most valuable species is Dungeness crab, which resides on the subsurface shelf and is sensitive to near‐bottom ocean properties such as temperatures and oxygen concentrations. The predictability of these properties on seasonal time scales is being investigated using J‐SCOPE (JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem), developed at the University of Washington’s Cooperative Institute for Climate, Ocean and Ecosystem Studies... more »