Measuring South Pacific low-latitude western boundary currents with ocean gliders: A pilot study

William S. Kessler NOAA / PMEL, Seattle USA

Russ Davis and Jeff Sherman (Scripps Institution of Oceanography, La Jolla USA)

Lionel Gourdeau

(Institut de Recherche pour le Developpement, Noumea, New Caledonia)

Scientific context: South Pacific circulation

The vertically-integrated circulation shows two gyres with a bifurcation near 18°S. (Sverdrup/Island Rule transport from scatterometer winds).

About half the SEC transport goes north through the Solomon Sea.

Mean Solomon Sea transport is 15-20 Sv.

Scientific context: South Pacific circulation

Work on the subtropical-equatorial exchange* points to the importance of the western boundary limb of the circulation: Transport that determines the properties (temperature, salinity, carbon content) of the equatorial cold tongue.

Our goal is a sustained time series of the western boundary transport to the equator.

^{*} Papers by Johnson, McPhaden, Zhang

Programmatic context: Climate prediction

NOAA Strategic Plan - Mission Goal (Climate):

A predictive understanding of the global climate system on time scales of weeks to decades, with quantified uncertainties sufficient for making informed and reasoned decisions.

NOAA Research Plan - (Climate goal):

- Describe and understand the state of the climate system through integrated observations, analysis and data stewardship.
- Improve climate predictive capability from weeks to decades.
- Increase number and use of climate products and services to enhance public and private sector decision making.

Funding

CPO Climate Observations funds to Scripps CORC and PMEL

The ocean glider "Spray": Schematic diagram The Spray glider is developed and built by the Instrument Development Group at the Scripps Institution of Oceanography aft of wings is shown rotated 90° in La Jolla, Ca, USA. FWD PACK **PITCH** -- 10 cm --**EXTERNAL** COMPASS ROLL 32 D cell pack ELECTRONICS 16 D cell 56 D cell pack ALTIMETER 2 meters long, weighs 50kg 1.2 m ⇒ Work from small boats near shore, much cheaper than a ship. Cost to build: about \$50K

Savo Island, Ironbottom Sound, Solomon Islands

The glider is essentially an Argo float with wings and moveable batteries

A dive of the Spray glider

 $3 \text{ km} \rightarrow 20 \text{ cm/s} \longrightarrow (3-5 \text{ hr})$

Range about 4 months or 2000km

A glider dives to 500-1000m, taking 3-5 hours, and moves forward about 2-4 km.

→ Very dense sampling

CTD measures, plus

Data reported by Iridium satellite each time it surfaces.

Estimate <u>vertical-average</u> absolute currents by the glider's drift:

First 2 missions from Guadalcanal to New Caledonia in 2005-6,

but this is an inappropriate use of the technology.

The 3km/3-4hr dives of the glider oversample the ocean interior, and its slow travel time aliases time variability.

⇒ Best used in coastal regions and for boundary currents

4 glider surveys so far (3 completed, 1 in progress)

Red = Aug-Nov 07 (Rossel, PNG to Gizo, Solomon Islands)

Yellow = Nov 07-Feb 08 (Honiara to Gizo via Rossel)

Green = Feb-Jul 08 (Honiara to Gizo via Rossel)

4 glider surveys so far (3 completed, 1 in progress)

Red = Aug-Nov 07 (Rossel, PNG to Gizo, Solomon Islands)

Yellow = Nov 07-Feb 08 (Honiara to Gizo via Rossel)

Green = Feb-Jul 08 (Honiara to Gizo via Rossel)

Vector absolute current above 500m

(Tide-filtered)

An example of tide-filtering Gaussian objective mapping with a time-scale of 1.5 days.

Absolute <u>crosstrack</u> geostrophic currents from glider motion and relative geostrophy

Isopycnals above 25 slope down across the Solomon Sea.

Upper shear is southward: WBC is an undercurrent.

Spray6 (Aug-Oct 07). Spray18 (Nov 07-Feb 08), Spray1 (Feb-Jul 08) Spray6 (Launch 4 July 08)

After 4 missions, is there a discernable "background"?

- The only consistent feature is a strong NGCC.
- Perhaps a consistent SW-ward flow in the northeast.

Spray6 (Aug-Oct 07). Spray18 (Nov 07-Feb 08), Spray1 (Feb-Jul 08) Spray6 (Launch 4 July 08)

Pre-La Niña, "normal"

- Strong NGCC, ~18Sv.
- Surprising that perhaps half the transport flowed through the narrow channels and reefs of PNG.

Spray6 (Aug-Oct 07). Spray18 (Nov 07-Feb 08), Spray1 (Feb-Jul 08) Spray6 (Launch 4 July 08)

Spray6 (Aug-Oct 07). Spray18 (Nov 07-Feb 08), **Spray1 (Feb-Jul 08)** Spray6 (Launch 4 July 08)

Late in the La Niña

- SEC reversed!
- Weak, disorganized NGCC.

Spray6 (Aug-Oct 07). Spray18 (Nov 07-Feb 08), Spray1 (Feb-Jul 08) Spray6 (Launch 4 July 08)

Post-La Niña

- SEC restored
- NGCC will be too?

Anomalous winds and curl during Aug 07-Mar 08

Anomalous winds and curl during Aug 07-Mar 08

150°W

$$Curl(\tau)(10^{-7}Nm^{-3})$$

180°

150°E

10°S

(Quikscat winds, anomalies from the 99-08 annual cycle)

90°W

120°W

-0.4

-0.6 -0.8

Observed Total currents

Anomalies simulated by a Rossby model sampled on the glider time/position

The downwelling curl signature of the La Niña was strong. Its remote effects were fairly well simulated by a Rossby model, using the Firing et al (1999) Time-dependent Island Rule and a Godfrey 1975 formulation for the Australia coastal signal.

Future plans

- Funded (NOAA/Scripps/IRD) for deployments every 3 months through 2009.
 A test mission will attempt approaching Vitiaz St.
- A France-Australia experiment (SPICE) funded for 2010-2011.
- Over the next 2-5 years, the pilot will evolve towards sustained monitoring.

Conclude

 Gliders are capable of sampling the South Pacific LLWBC.

They (and their operation) are cheap enough to constitute a sustained monitoring program.

- NGCC transport is 15-20Sv, and varies interannually (?) to near zero.
- Temporal sampling still not good enough for short timescales.
- Deeper dives would be desirable (but are hard to accomplish).

Extra Figures Follow ...

Currents during Nov-Dec 2007

Glider currents in the Solomon Sea

Spray18 (Nov-Dec 07)

Currents during Nov-Dec 2007

Glider currents in the Solomon Sea

Currents during Mar-Apr 2008

Glider currents in the Solomon Sea

Spray18 (Nov-Dec 07) and Spray1 (Feb-Mar 08) TIDE-FILTERED

Currents during Mar-Apr 2008

Glider currents in the Solomon Sea

Spray18 (Nov-Dec 07) and Spray1 (Feb-Mar 08) TIDE-FILTERED

Future plans

Funded (NOAA/Scripps/IRD) for deployments every 3 months through 2009 A test mission will attempt approaching Vitiaz St

South Equatorial Current transport has a strong El Niño signal

SEC on the Auckland-Japan XBT track, over 10°S-20°S. Demeaned.

Temperature and salinity along the glider track

First mission: A coordinated experiment to study the South Equatorial Current

Jul-Oct 2005

- A shipboard section made 14 profiles to 2000m.
- A glider section made dense profiles to 600m.
- An Argo float drifted through the NCJ.

Crosstrack transport accumulated from Rossel Is.

Spray 6, dives 7-265. Aug-Nov 2007. Total crosstrack transport=-18.166 Sv

Lower ticks show each 10th/50th dive

ORCA model circulation at surface, thermocline and below

Where are we now?

A La Niña began in late 2007. We would expect a weak NGCC.

The glider observations show that the NGCC is weakening

The transport of the NGCC declined by about 60% between August 2007 and January 2008 as the La Niña grew

South Pacific circulation

First 2 missions from Guadalcanal to New Caledonia in 2005-6, but this is an inappropriate use of the technology.

The 3km/3-4hr dives of the glider oversample the ocean interior, and its slow travel time aliases time variability.

⇒ Best used in coastal regions and for boundary currents