

Argo at PMEL: Intro

http://floats.pmel.noaa.gov

- Active float positions as of 3 July 2008
- •red dots = positions of active PMEL floats
- •green dots = other US floats

- •International program observing the global oceans
- •Fleet of 3000 robotic floats each sampling every 10 days
- •Commenced in 2000 and reached 3000-float target November 2007
- •3° x 3° array -> 100,000 2-km depth profiles/year of public real-time data
- Year-round climate-quality temperature, salinity, and pressure data
- •International effort: 23 countries providing floats
- •US consortium provides half the global effort
- •Gov't agencies (PMEL, AOML, FNMOC), Academic Institutions (SIO, UW, WHOI), and instrument manufacturers (Teledyne WRC, SeaBird Electronics)
- End-to-end (Float providers involved in instrumentation development, preparation & testing, deployment, scientific quality control, and analysis)

Argo at PMEL: Linkages

NOAA Research Plan and Strategic Plan

- •NOAA Strategic Plan Performance Objective: Describe and understand the state of the climate system through integrated observations, analysis, and data stewardship.
- •NOAA Research Plan Research Area:

 Develop an integrated global observation and data management system for routine delivery of information, including attribution of the state of the climate.

Argo epitomizes these plans Argo is a GEOSS success

What is an Argo Float?

http://www.argo.ucsd.edu/

Argo at PMEL: Float Providing

Argo Float purchases budgeted:

Active PMEL Float Locations 03 Jul 2008

•As of 03 July 2008:

- -340 Argo floats deployed-307 Argo floats active
- 100 80 80 40 20 2003 2004 2005 2006 2007 2008

Calendar Year

Vessels: NOAA Ship Ronald H. Brown, R/V Maurice Ewing, M/V Explorer, NOAA Ship Miller Freeman, T/S Golden Bear, NOAA Ship Hi'ialakai, NOAA Ship David Starr Jordan, NOAA Ship Ka'imimoana, R/V Kilo Moana, NOAA Ship McArthur II, R/V Melville, T/S Oshoro Maru, USCG Polar Sea, R/V Roger Revelle, SSV Robert C. Seamans, R/V Tangaroa, R/V Thomas G. Thompson, R/V Wecoma, R/V Knorr. . .

Argo at PMEL: Float Preparation

- •Suite of tests developed with academic colleagues & manufacturers
- <-Proof of value in survival rate plots
- Careful preparation & deployment by user-providers maximizes data return and data quality
- -Inspect exterior, seals, &components
- -Check weight
- -Test transmitter, oil pump, vacuum, CTD
- -Check pneumatics
- -Replace batteries: alkaline -> lithium, increases float longevity
- -Check salinity for calibration/fouling
- -Dock Testing for multi-profile mission
- -Monitor atmos. pressure readings
- -Check vacuum, piston, mission
- -Record max temperature during shipping
- -Store test results in a database

Argo at PMEL: Float Reliability

•Feedback to manufacturers benefits all users

- -Found O-ring impurities
 - -> Better O-ring inspections & new vendor at WRC
- -Focused attention on bladder delamination
 - -> More attention to bladder stock at WRC
 - -> Improved bladder welding
 - -> WRC investigating new vendor
- -Found numerous leaky pneumatic systems
 - -> Improved testing at WRC
- -Demonstrated air pump failures
 - -> WRC changing software to avoid power drain
- -Focused attention on TBT fouling of conductivity cells
 - -> Improved TBT plug installation procedures at SBE
- -Focused attention on pressure sensor problems
 - -> SBE working on sensor screening procedures
- -Feedback to WRC on ballasting field performance
 - ->Compensator charge & piston position checks at WRC
 - ->Adjustments in ballasting correction factors
- -Better desiccant packs at WRC
- -Focused attention on QC at WRC
 - -> New checksheets
 - -> Thermal cycling of components
 - -> Closer attention to quality of hardware & assembly

Argo at PMEL: Technology

Several PMEL-Driven Improvements Benefit Argo as a whole:

- •APF-8 fast first profile
 - -First profile within a day after deployment
 - -Allows closer comparisons with shipboard CTD
- •APEX APF-8 pressure activation
 - -Float periodically checks pressure
 - -Easier deployments & fail-safe backup
- •APEX APF-8 improved pressure telemetry
 - -Will allow reporting negative pressures
 - -First floats deployed in December 2007
- •APEX APF-8 air pump limitation software
 - -Prevents excess power drain if pump fails
- APEX Compensator
 - -Allows global 2000-dbar profiling
 - -Early adopter of this device

Field testing pressure activation on Lake Washington

Argo at PMEL: Data Quality Standards

- -Work by A. Wong (UW), G. Johnson (PMEL), & B. Owens (WHOI)
- -Manuscript published in 2003 (J. Atmos. Oceanic Technol.)
- -Method has been adopted & revised internationally
- -Argo DMQC mainstay

•CTD Sensor Response Corrections

- -Work by G. Johnson (PMEL), J. Toole (WHOI), & N. Larson (SBE)
- -SBE-41 and SBE-41CP conductivity cell thermal mass error
- -Manuscript published in 2007 (J. Atmos. Oceanic Technol.)
- -Correction algorithm developed & distributed
- -International adoption proceeding

•PMEL Delayed Mode Quality Control

- -Examine each profile for quality flag changes
- -Apply pressure drift correction, sensor response corrections
- -Correct conductivity sensor drift if needed

Argo at PMEL: Outreach

Undergraduate involvement in climate observing system

SSV Robert C. Seamans (Sea Education Association) 29 floats on 12 cruises! Ongoing collaboration

M/V Explorer (Semester at Sea) 7 floats on 1 cruise Oceanography lectures

T/S Golden Bear (Cal Poly at Sea) 22 floats on 3 cruises Ongoing collaboration

Argo at PMEL: Publications

- Johnson, G. C. 2008. A cyclonic submesoscale coherent vortex in the northeast Pacific. Journal of Physical Oceanography, submitted.
- Willis, J. K., J. M. Lyman, J. M., G. C. Johnson, and J. Gilson. 2008. In situ data biases and recent ocean heat content variability. Journal of Atmospheric and Oceanic Technology, in revision.
- Lyman, J. M, and G. C. Johnson. 2008. Estimating global upper ocean heat content despite irregular sampling. Journal of Climate, in press.
- Johnson, G. C., and J. M. Lyman. 2008. Global Oceans: Sea Surface Salinity. In State of the Climate in 2007, Bulletin of the American Meteorological Society, 89, in press
- Johnson, G. C., J. M. Lyman, and J. K. Willis. 2008. Global Oceans: Heat Content. In State of the Climate in 2007, Bulletin of the American Meteorological Society, 89, in press.
- Stramma, L., G. C. Johnson, J. Sprintall, and V. Mohrholz. 2008. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science, 320, 655–658, doi: 10.1126/science.1153847.Johnson, G. C., and J. M. Lyman. 2007. Global Oceans: Sea Surface Salinity. In State of the Climate in 2006, A. Arguez, Ed., Bulletin of the American Meteorological Society, 88, 6, S34–S35
- Johnson, G. C., J. M. Lyman, and J. K. Willis. 2007. Global Oceans: Heat Content. In State of the Climate in 2006, A. Arguez, Ed., Bulletin of the American Meteorological Society, 88, 6, S31–S33.
- Johnson, G. C., J. M. Toole, and N. G. Larson. 2007. Sensor corrections for Sea-Bird SBE-41CP and SBE-41 CTDs. Journal of Atmospheric and Oceanic Technology, 24, 1117-1130.
- Aagaard, K., T. J. Weingartner, S. L. Danielson, R. A. Woodgate, G. C. Johnson, and T. E. Whitledge. 2006. Some controls on flow and salinity in Bering Strait. Geophysical Research Letters, 33, L19602, doi:10.1029/2006GL026612.
- Lyman, J. M., J. K. Willis, and G. C. Johnson. 2006. Recent cooling of the upper ocean. Geophysical Research Letters, 33, L18604, doi:10.1029/2006GL027033. & Willis, J. K., J. M. Lyman, G. C. Johnson, and J. Gilson. 2007. Correction to "Recent cooling of the upper ocean". Geophysical Research Letters, 34, L16601, doi:10.1029/2007GL030323.
- Johnson, G. C., J. M. Lyman, and J. K. Willis. 2006. Global Oceans: Heat Content. In State of the Climate in 2005, K.A. Shein, Ed., Bulletin of the American Meteorological Society, 87, 6, S23–S24.
- Johnson, G. C. 2006. Generation and initial evolution of a mode water theta-S anomaly. Journal of Physical Oceanography, 36, 739–751.
- Wirts, A. E., and G. C. Johnson. 2005. Recent interannual upper ocean variability in the deep southeast Bering Sea. Journal of Marine Research, 63, 38–405.
- Wong, A. P. S. 2005. Subantarctic Mode Water and Antarctic Intermediate Water in the South Indian Ocean based on profiling float data 2000–2004. Journal of Marine Research, 63, 789–812.
- Johnson, G. C., P. J. Stabeno, and S. D. Riser. 2004. The Bering Slope Current System revisited. Journal of Physical Oceanography, 34, 384–398.
- Wong, A. P. S., and G. C. Johnson. 2003. South Pacific Eastern Subtropical Mode water. Journal of Physical Oceanography, 33, 1493–1509.
- Wong, A. P. S., G. C. Johnson, and W. B. Owens. 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology. Journal of Atmospheric and Oceanic Technology, 20, 308-318.

Argo Future Possibilities

•Full-depth sampling:

- -52% of ocean volume below 2000 m
- -For climate studies: ocean heat storage, sea level rise, and MOC

•Under ice systems:

- -Make Argo truly global
- -More observations in climate-sensitive high latitudes

Oxygen & other biogeochemical sensors:

- -Would improve ocean carbon storage estimates
- -Additional link to ecosystems studies

•Iridium data transmission system

- -Reduces surface time
- -Allows better vertical resolution
- -Allows more sensors

