Natural CO₂ from Submarine Hydrothermal Systems

John Lupton, Presenter

Supported by NOAA's Ocean Exploration Program

Outside Collaborators

- Marvin Lilley (Univ. of Washington)
- ■Ko-ichi Nakamura (AIST, Japan)
- Cornel de Ronde (IGNS, New Zealand)
- Verena Tunnicliffe (Univ. of Victoria, B.C.)
- Gary Massoth (IGNS and Mass-Ex3 Consulting)
- Mark Schmitt (Univ. Kiel, Germany)

Typical subduction zone

Mariana Arc

CO₂ Phase Diagram

modified from Jessup and Leitner, 1999

Sampling devices used for gas collections

Champagne Vent, Droplet Catcher, 2005

Comparison with mid-ocean ridge systems

Shell Samples (from live mussels)

Sample	Site	Depth m	# shells	рН	alk	Max T °C	
E1	Eifuku	1576	41	5.88		2.3	
E2	Eifuku	1596	11	5.94	2.49	2.5	
E3	Eifuku	1610	5	6.51	2.46	2.4	
E4	Eifuku	1638	12	5.36	2.62	2.7	
T1	Tonga	1103	10	7.85	2.46	-	
L1	Lau	1830	10	8.42	2.34	2.0	
L2	Lau	1820	10				
L3	Lau	1900	12		Vater collection using a ow pumping sampling or		
L4	Lau	2622	14	with evaculated bottles with controlled intake flows.			
L5	Lau	2714	12	controlled intake nows.		WS.	

Dry weight of shells: much lighter shells in high CO₂ setting

Thickness of shells on cut slices

thickness

Shells from low CO₂ habitat are 2.5 times the thickness of those on Eifuku Volcano

Of 22 volcanoes studied on the Mariana and Tonga-Kermadec Arcs, 6 are venting a separate CO2-rich gas phase

Nikko (2005) 455 m depth

Summary

- Of 22 active submarine volcanoes investigated, 6 had a free CO₂-rich gas phase
- Excess CO₂ is derived mainly from subducted marine carbonates incorporated into the volcanic melt.
- Tunnicliffe et al. study indicates that the mussel shells on NW Eifuku compromised by low pH environment.
- CO₂ flux at NW Eifuku equals 0.1% of the global mid-ocean ridge carbon flux

Future Directions

- Estimate the carbon flux at CO₂-rich hydrothermal sites
- Assess effect of submarine CO₂ venting on the global oceanic carbon budget
- Evaluate the effects of high CO₂ concentrations on marine ecosystems via biological studies at natural sites such as NW
 Eifuku relevance to Ocean Acidification