NOAA Data Report ERL PMEL-28

FISHERIES-OCEANOGRAPHY COORDINATED INVESTIGATIONS (FOCI) FIELD OPERATIONS - 1987

- L. A. Lawrence
- J. Gray
- D. M. Blood

Pacific Marine Environmental Laboratory Seattle, Washington February 1991

NOAA Data Report ERL PMEL-28

FISHERIES-OCEANOGRAPHY COORDINATED INVESTIGATIONS (FOCI) FIELD OPERATIONS - 1987

L. A. Lawrence

J. Gray

D. M. Blood

Pacific Marine Environmental Laboratory Seattle, Washington February 1991

UNITED STATES
DEPARTMENT OF COMMERCE

Robert A. Mosbacher Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

John A. Knauss Under Secretary for Oceans and Atmosphere/Administrator Environmental Research Laboratories

Joseph O. Fletcher Director

NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA/ERL. Use of information from this publication concerning proprietary products or the tests of such products for publicity or advertising purposes is not authorized.

Contribution No. 1087 from NOAA/Pacific Marine Environmental Laboratory

For sale by the National Technical Information Service, 5285 Port Royal Road Springfield, VA 22161

CONTENTS

		PAGE
List c	of Figures	vi
1.	INTRODUCTION	1
2.	MATERIALS AND METHODS	3
	2.1 Shipboard Sampling 2.2 Moored Instruments 2.3 Remote Weather Stations 2.4 Drifter Studies 2.5 Satellite Imagery	5 6 6
3.	SHIP CRUISE SUMMARIES	7
	3.1 RIBS-87-I. 3.2 FOCI-87-I 3.3 FOCI-87-II 3.4 RIBS-87-II 3.5 FOCI-87-III. 3.6 FOCI-87-IV	14 22 29 33
4.	MOORED INSTRUMENTS SUMMARY	44
5.	REMOTE WEATHER STATION SUMMARY	48
6.	DRIFTER SUMMARY	53
7.	SATELLITE IMAGE SUMMARY	55
8.	ACKNOWLEDGMENTS	61
9.	REFERENCES	61

FIGURES

	TIOCHED	PAGE
1a.	Geographical area of FOCI research	. viii
1b.	Shelikof Strait area	. viii
2.	FOCI master station grid	2
3.	RIBS-87-I (MF-86-11) sampling stations	10
4a.	FOCI-87-I (MF-87-04) biological sampling stations	16
4b.	FOCI-87-I (MF-87-04) physical sampling stations	16
5a.	FOCI-87-II (MF-87-06) biological sampling stations	24
5b.	FOCI-87-II (MF-87-06) physical sampling stations	24
6.	RIBS-87-II (MF-87-07) sampling stations	30
7.	FOCI-87-III (MF-87-08) sampling stations	34
8.	FOCI-87-IV (MF-87-08) sampling stations	40
9.	METNET site locations	50
10.	METNET station data return periods	52
11.	Satellite image sample	56

TABLES

		PAGE
1.	FOCI research cruises and sampling activities during FY 1987	8
2.	Sampling activities during RIBS-87-I (MF-86-11)	11
3.	Sampling activities during FOCI-87-I (MF 87-04)	17
4.	Sampling activities during FOCI-87-II (MF-87-06)	25
5.	Sampling activities during RIBS-87-II (MF 87-07)	31
6.	Sampling activities during FOCI-87-III (MF-87-08)	35
7.	Sampling activities during FOCI-87-IV (MF-87-08)	41
8.	1987 mooring deployments	45
9.	1987 mooring recoveries	47
10.	METNET site information	51
11.	Time periods and locations of drifter buoys released during 1987	54
12.	Satellite image information	57

LIST OF ABBREVIATIONS

AOML Atlantic Oceanographic and Meteorological Laboratory, Miami, FL (NOAA/OAR/ERL)

ARGOS a French satellite communications network

BNL Brookhaven National Laboratory, Upton, NY

ERL Environmental Research Laboratories (NOAA/OAR)

FAO United Nations Fisheries and Agricultural Organization

FOCI Fisheries-Oceanography Coordinated Investigations

FOX Fishery Oceanography eXperiment (a FOCI program)

FY Fiscal Year

GMT Greenwich Mean Time

GOES Geostationary Operational Environmental Satellite

JD Julian Day

METNET METeorological NETwork of remote surface stations

NESDIS National Environmental Satellite Data and Information Service

NMFS National Marine Fisheries Service (NOAA)

NOAA National Oceanic and Atmospheric Administration (U.S. Department of Commerce)

NWAFC NorthWest and Alaska Fisheries Center, Seattle, WA (NOAA/NMFS)

OAR (Office of) Oceanic and Atmospheric Research (NOAA)

OCSEAP Outer Continental Shelf Environmental Assessment Program (an interagency program

with NOAA and the Minerals Management Service)

PMEL Pacific Marine Environmental Laboratory, Seattle, WA (NOAA/OAR/ERL)

RIBS Recruitment Investigations in the Bering Sea (a FOCI program)

RSMAS Rosensteil School of Marine and Atmospheric Sciences/University of Miami, FL

SDSD Satellite Data Services Division, Suitland, MD (NOAA/NESDIS)

UW University of Washington, Seattle, WA

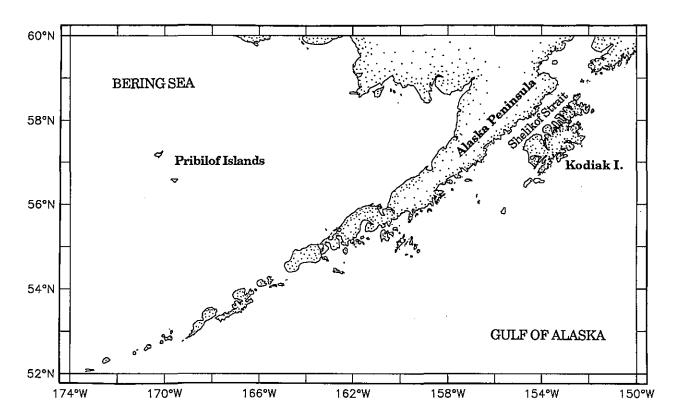


Figure 1a. Geographical area of FOCI research.

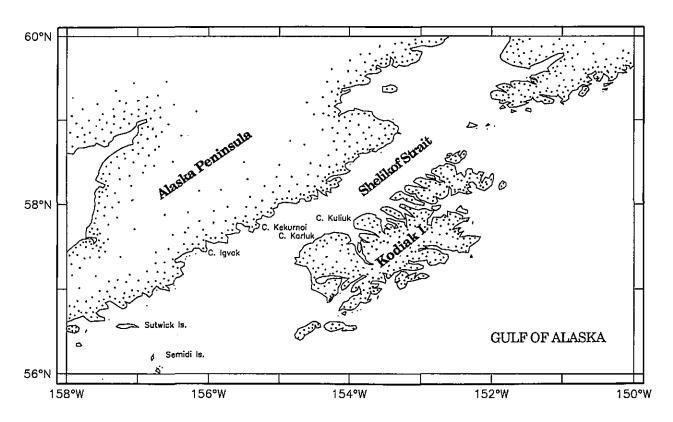


Figure 1b. Shelikof Strait area.

Fisheries-Oceanography Coordinated Investigations (FOCI) Field Operations – 1987

Leslie A. Lawrence¹, Judith Gray¹ and Deborah M. Blood²

1. INTRODUCTION

The field operations outlined in this report were conducted as part of the Fisheries Oceanography Coordinated Investigations (FOCI), a joint project of Pacific Marine Environmental Laboratory (PMEL) and the Northwest and Alaska Fisheries Center (NWAFC), with affiliates from several other research facilities and universities. FOCI is a long-term, multi-disciplinary research project which seeks to better understand the biological and physical processes that influence the early life stages and recruitment of walleye pollock (*Theragra chalcogramma*). The long-range objective is to enable improved prediction of interannual variations in year-class strength of this commercially important fish stock.

The primary geographical area of investigation is the western Gulf of Alaska, with particular emphasis on Shelikof Strait and west along the Alaska Peninsula. This area was chosen because of its importance to the American fishing industry and because the majority of the pollock spawn in a well-defined region in the deepest part of the Shelikof Strait during a brief period in spring. The resulting eggs and larvae tend to form a fairly distinct "patch" which is exceptionally conducive to fisheries oceanographic study. FOCI has also conducted some exploratory research in the Bering Sea, under the rubric RIBS (Recruitment Investigations in the Bering Sea).

FOCI field work in fiscal year 1987 included six oceanographic cruises (FOCI I-IV and RIBS I & II), the continued acquisition of satellite images of the study area, and remote weather station servicing via helicopter. Operations during the cruises included: continuation of long-term time-series Conductivity/Temperature/Depth (CTD) sampling; deployment of satellite-tracked drifting buoys and current meter moorings; recovery of current meter moorings deployed during the preceding field season; acquisition of data from a ship-mounted Acoustic Doppler Current Profiler (ADCP); biological and chemical sampling of water; distribution studies of pollock eggs, larvae, and juveniles; and maintenance and recovery of the PEGGY station, which consisted of a meteorological buoy, a current meter mooring, and a moored ADCP in close proximity, for the purpose of observing the relationship between surface winds and currents. Oceanographic sampling was done primarily according to the grid system devised for the FOX project (Fig. 2); RIBS stations do not follow any standard grid pattern. Individual cruise operations are outlined in Table 1, and summary cruise reports comprise Section 3. Remote weather station and satellite image summaries can be found in Sections 5 and 7, respectively.

NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115
 NOAA/Northwest and Alaska Fisheries Center, Seattle, WA 98115

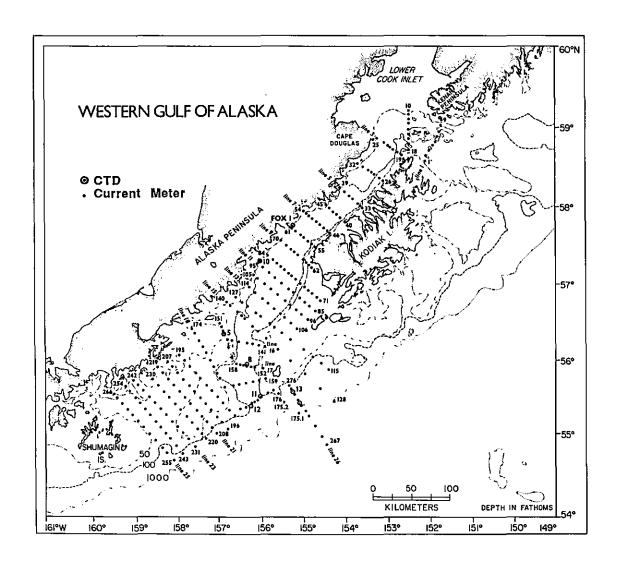


Figure 2. FOCI master station grid.

2. MATERIALS AND METHODS

2.1 Shipboard Sampling

There were six cruises that conducted sampling for FOCI in FY 1987 (designated FOCI 87-I through IV and RIBS-87-I and II). These are summarized in Table 1 and detailed in Sec. 3. Materials and methods of sampling were as follows except where specifically noted otherwise in Sec. 3.

Shipboard Meteorological Observations

Ship personnel conducted hourly measurements of surface meteorological variables during all cruises. Sea-level pressure was determined from an aneroid barometer, air temperature and wet-bulb temperature from sling psychrometer readings on the upwind bridge wing (except the NOAA Ship *Miller Freeman* which has a ventilated housing on the port-side bridge wing), wind speed and direction from a Bendix-Friez aerovane mounted on the mast head, and sea-surface temperature from the ship's seawater-intake port or bucket thermometer. All sensors were calibrated before each cruise by the Seattle National Weather Service port meteorological officer; calibrations are traceable to the National Bureau of Standards. Additional estimates of visibility, cloud type, wave and swell height and direction were made when possible.

CTD

The CTD system used on all six cruises was a Seabird SBE-9. Temperature and salinity field correction samples were obtained on most casts. Temperature was sampled via reversing thermometers; salinity samples were analyzed on an AutosalTM salinometer aboard ship.

Nutrients and Chlorophyll

Nutrient and chlorophyll samples for FOCI were obtained from 10-L Niskin bottles deployed with a rosette sampler/CTD system. Nutrient bottles were generally tripped at 0, 10, 20, 30, 50, 75, and 100-m depths. Additional nutrient samples were taken below 100 m, usually at 50-m intervals. RIBS-87-II nutrient samples were taken at 0, 20, 50, 100, 150, 200, 300, 400, 500, 600, 800, and 1000 m. The deepest samples were usually taken approximately 15 m from the bottom. Chlorophyll samples were collected at 3, 13, 23, 33, and 50 m, with one cast at depths of 0, 5, 15, 20, 25, 30, 45, and 60 m, and two casts with nutrients at 0, 10, 15, 20, 25, 30, 40, 50, and 60 m.

Nutrient samples were frozen in 250-ml aged polyethylene bottles and returned to the laboratory where they were analyzed on a Technicon Auto AnalyzerTM II (Whitledge *et al.*, 1981). Chlorophyll samples (100 ml) were filtered at sea through 0.45-µm Millipore HA acetate filters and frozen. Acetone extraction and fluorometric measurements (Yentsch and Menzel, 1963) were performed after samples were returned from sea.

Plankton

Microzooplankton were sampled with 10-L Niskin bottles tripped at 0, 10, 20, 30, 40, 50, and 60 m. Water was filtered through 0.40-mm mesh filter bags that were back-flushed into storage jars with 5% buffered formalin.

Net plankton (including ichthyoplankton) were sampled with 0.333-mm or 0.505-mm mesh nets. A 60-cm (diameter) bongo collector (Posgay and Marak, 1980) was the most widely used equipment. During FOCI-87-I, II, and III, 20-cm bongo collectors were used with 0.150-mm mesh nets for zooplankton at selected stations. At those stations, 20-cm and 60-cm collectors were towed on the same wire approximately 1.5 m apart.

Bongo nets were towed according to MARMAP procedures (Smith and Richardson, 1977) except that tows were made to near bottom or to a maximum depth of 400 m. Wire angles were monitored throughout all tows and a bathykymograph (BKG) was used to monitor the depth and trajectory of bongo tows. Volume filtered by the nets was estimated using a General Oceanics flowmeter mounted inside the mouth of each net. Samples were stored in 5% buffered formalin.

A Tucker trawl was used to investigate predation by euphausids on walleye pollock eggs and collect late-stage larvae. The samplers were equipped with 0.505-mm mesh nets and either 1.4-mm (for euphausids) or 0.333-mm (for larvae) mesh cod ends. A BKG was attached to the towing wire below the deepest net to monitor the tow profile. The trawl was deployed at 50 m min⁻¹ to 10 m off the bottom or to a maximum depth of 150 m. After stabilizing for 30 seconds, the first net was opened. The nets were retrieved at a wire speed of 20 m min⁻¹. Ship speed was adjusted to maintain a 45-degree wire angle during the entire tow. At a specified depth a messenger was sent to close the first net and open the second, which was allowed to stabilize for 30 seconds before the tow continued. During the FOCI-87-I egg predation study, the first net sampled the water column below 100 m and the second net sampled the upper 100 meters. During FOCI-87-III and IV and RIBS-87-II, the nets were opened at varying depths or used in an open configuration.

A MOCNESS¹ (Wiebe *et al.*, 1976) was used to sample the vertical distribution of walleye pollock eggs and larvae and zooplankton during FOCI-87-I and II. During FOCI-87-I, zooplankton was collected with a 0.150-mm mesh net and walleye pollock eggs were sampled with a 0.505-mm mesh net. Nets were opened and closed at different depth intervals for zooplankton and pollock eggs (see Table 3). Zoo- and ichthyoplankton were both sampled with 0.150-mm mesh nets during FOCI-87-II. Nets were opened and closed to sample the following nominal depth intervals, as allowed by station depth: 0-15, 15-30, 30-45, 45-60, 60-80, 80-100, 100-150, and 150-200 m. Volume, depth, temperature, and fluorescence were monitored throughout the tows during this cruise.

¹ Multiple Opening-Closing Net Environmental Sampling System.

An *in situ*, silhouette-photography, towed sampling system (referred to hereafter as the Ortner net-camera: Ortner *et al.*, 1981) was used during FOCI-87-I and II to sample small-scale (order 8 m) patchiness in the abundance of walleye pollock eggs and larvae and major zooplanktonic taxa. The instrument was towed obliquely on descent and ascent to within 20 m of bottom and the camera was actuated on the ascent. Flow, conductivity, temperature, depth, and fluorescence were continuously monitored.

A Diamond midwater trawl (Nelson and Nunnalee, 1986) was fished twice on FOCI-87-I at depths and locations where an echosounder (Simrad 38 kHz) showed signs of fish. A Marinovich trawl was fished on RIBS-87-I. Tows were about a half hour in duration and were made according to standard procedures aboard the *Miller Freeman*. Samples of fish were taken for studies of reproductive biology, egg cannibalism, and specific gravity of eggs (both cruises).

Shipboard Current Measurements

An RD Instruments Acoustic Doppler Current Profiler was deployed during MOCNESS and net-camera tows of FOCI-87-I and II. The transducer was a 300 kHz unit equipped with an on-board gyroscopic pitch-roll sensor and linked to a microcomputer. Acoustic measurements of horizontal shear were sought to examine the potential for shear dispersion within the diurnal migrating range of larval pollock and zooplankton.

2.2 Moored Instruments

During October 1986, five current meter moorings (stations 15-19) were deployed across the Shelikof Sea valley off Sutwik Island to look at lateral variations in the position and strength of the Alaska Coastal Current (ACC). These five moorings were recovered in June and July 1987. The four long-term FOCI moorings 2, 5, 8, and 14 were recycled. The moored ADCP component of PEGGY was recovered in June 1987; PEGGY's current meter mooring and meteorological buoy were recovered in July.

Current meters were standard Aanderaa RCM-4's or Neil Brown acoustic current meters. Bottom pressure gauges were mounted on all moorings. All Aanderaa current meters and bottom pressure gauges were set at a one-hour sample interval. The pressure gauges were sampled instantaneously once each hour. Aanderaa current direction, temperature, pressure, and conductivity were instantaneous samples; current speed was averaged over the hour. The Neil Brown meters averaged u and v current components over a 10-minute period and recorded the average every 10 minutes; temperature was instantaneously sampled and recorded every 10th 10-minute interval and the 9 previous sampling times were backfilled with this value.

2.3 Remote Weather Stations

During the fiscal year, five remote weather stations operated at sites along the Alaska Peninsula. The stations continued sampling begun in September 1986 and constituted the mesoscale meteorological network METNET with stations at Wide Bay, Ugaiushak Island, Chowiet Island, Chirikof Island, and Tugidak Island. A summary of remote weather station operations is contained in Sec. 5. Station names, locations, and elevations are given in Table 10.

Each station consisted of a Handar 430A wind speed sensor, a Handar 431A wind direction sensor (both certified by the National Weather Service), a Handar 432A temperature probe, a Handar 435A relative humidity sensor, and a Setra 270B pressure transducer. Winds were measured 6 m above station elevation, temperature and humidity 2 m above station elevation. Pressure was referenced to sea level. Signals from the sensors were averaged hourly and transmitted to the GOES-West satellite every three hours by a Handar 540A multiple access data acquisition system.

2.4 Drifter Studies

A total of 21 satellite-tracked drifters were deployed from research vessels (11 drops). Drifters were drogued to 40 m except three deployed during FOCI-87-I with 200-m drogues. The 7100 and 2300 series drifters were from Coastal Climate, Inc., Seattle, and used two 20-m long pieces of 1" diameter nylon rope cross-connected at 5-m intervals for the drogues. Drogues were weighted with chain and connected to surface buoys with 3/16" cable. The 5600 series constructed by Horizon Marine, Inc., Marion, MA, used a "hole-filled sock" for the drogue. Slippage of the devices relative to water motion was estimated to be less than 10%. Positions were reported via ARGOS. A summary of drifter operations is included in Sec. 6 and Table 11. Deployments are listed in the individual cruise summaries (Sec. 3).

2.5 Satellite Imagery

A search of satellite data was conducted for the 1987 field season at the NOAA/NESDIS/ Satellite Data Services Division (SDSD) in Suitland, MD. Hard-copy images and digital data tapes are stored in the FOCI satellite data archive at PMEL (Table 11). The tapes contain navigated (i.e., they have the geographic positioning associated with the image) Advanced Very High Resolution Radiometer (AVHRR) data. In addition to the SDSD imagery, digital satellite data tapes have been saved from the Gilmore Creek, Alaska satellite data receiving station for the period Feb-May, 1987 (Table 11). These tapes contain "unnavigated" AVHRR data that were collected real-time as the satellite was in sight of the dish at Gilmore Creek. All the imagery saved from these two sources was selected on the basis of clear skies over Shelikof Strait and the surrounding area.

3. SHIP CRUISE SUMMARIES

This section provides a brief summary of the objectives and activities of each cruise. Figures showing all sampling stations for each cruise are provided. In some cases, biological and physical sampling stations for a given cruise are shown in separate figures to avoid congestion and enhance clarity. A table lists all sampling activities and locations for each cruise. Abbreviations not included in Table 1 are footnoted. Cruise station numbers are those assigned during the cruise by the cruise Chief Scientist. FOCI station numbers, when given, refer to FOCI master station (reference station) numbers which are shown in Fig. 2. These stations are located on transects that are referenced by line number, beginning with line 1 (Stations 1-9) and proceeding westward to line 25. Numbering begins at the seaward end of each line. RIBS has not established a master station grid at this time. Cruises are listed in chronological order.

TABLE 1. FOCI research cruises and sampling activities during FY 1987^{1,2}

Vessel, Cruise, Dates, Project, Cruise Name	CTD	В	b	MOC	Т	CAM	ΜŻ	N	Chl	MWT	Methot	STD	Other
MILLER FREEMAN MF-86-11, Oct 15- Nov 5, 1986 (RIBS-87-I)	87									18M ³			Deploy 5 CM moorings
MILLER FREEMAN MF-87-04, Apr 2- Apr 17, 1987 (FOCI-87-I)	12	131 plus→	14 B,b	8	7	3		6		2	_	11	Deploy 3 CM moorings; 3 STDs drogued at 200 m; 8 drogued at 40 m.
MILLER FREEMAN MF-87-06, May 18- May 29, 1987 (FOCI-87-II)	57	58	8	12 (95)		5	8 (47)	11 (110)	10 (61)			10	96 Gut fluorescence measurements on herbivorous copepods, 57 net collections for larval experiments, 4 acoustic density measurements of zooplankton on board, and one <i>in vivo</i> transect for temperature, salinity and fluorescence; 10 STDs deployed
MILLER FREEMAN MF 87-07, Jun 2- Jun 15, 1987 (RIBS-87-II)	57				10 (48)			6 (66)					Deploy 3 CM moorings in Aleutian passes
MILLER FREEMAN MF-87-08, Jun 16- Jul 3, 1987 (FOCI-87-III)	30	15	3		8						77		Recovered 5 and deployed 3 CM moorings
MILLER FREEMAN MF-87-08, Jul 6- Jul 16, 1987 (FOCI-87-IV)	12	4			3						92		Recovered 7 and deployed 1 CM mooring

Number of stations sampled is given for each category; the number of samples obtained is the same except where given in parentheses.

2 CTD = Conductivity/Temperature/Depth cast; B = 60-cm bongo sampler; b = 20-cm bongo; MOC = MOCNESS = Multiple Opening-Closing Net Environmental Sampling System; T = Tucker trawl; CAM = Ortner net-camera; MZ = microzooplankton; N = nutrients; Chl = chlorophyll; MWT = midwater trawl; CM = current meter; STD = satellite-tracked drifter; ADCP = acoustic doppler current profiler.

3 M is MWT with a Marinovich trawl; all other MWT are Diamond Net.

3.1 RIBS-87-I

Scientific party: Ron Reed, Chief Scientist, PMEL

Tom Jackson, PMEL Carol DeWitt, PMEL Peter Proctor, PMEL Tiffany Vance, PMEL

The objectives of this cruise were to moor current meter arrays in Shelikof Strait in order to monitor flow and physical properties, which may affect the distribution, growth, and survival of pollock. In addition, two of the FOCI standard sections were to be occupied to gain additional information on the variations in conditions in the region.

A major part of this project was concerned with circulation and pollock distribution in the deep, central Bering Sea. There had been no previous surveys of this large region conducted over a short time period. A synoptic survey was designed to yield a realistic view of circulation unbiased by averaging over different seasons and years.

Five current meter moorings were deployed in Shelikof Strait (See Table 1). Because of inability to find the planned depth near CM18, the line of moorings (CM18-CM15) was displaced northward about 6 nm. The FOCI standard CTD stations 147-151 (line 16) were occupied, as were stations 153, 156, and 158 (line 17). Intermediate stations on the latter line were not taken because of rough seas. CTD casts were also made at each of the current moorings. A total of 13 CTD casts were taken in Shelikof Strait.

In the Bering Sea, 74 CTD casts were made to near the bottom or to a maximum depth of 1500 m using the PMEL Seabird system. Some stations were added on the return transit to Dutch Harbor to better define circulation patterns near complex features along the continental slope.

A total of 18 Marinovich trawls were made (at the start and end of each line or when signs of organisms were present on the echosounder trace) to sample for juvenile pollock. Few specimens were found. Of the catches logged and frozen, it is believed that some of the smaller specimens may be smelt rather than pollock.

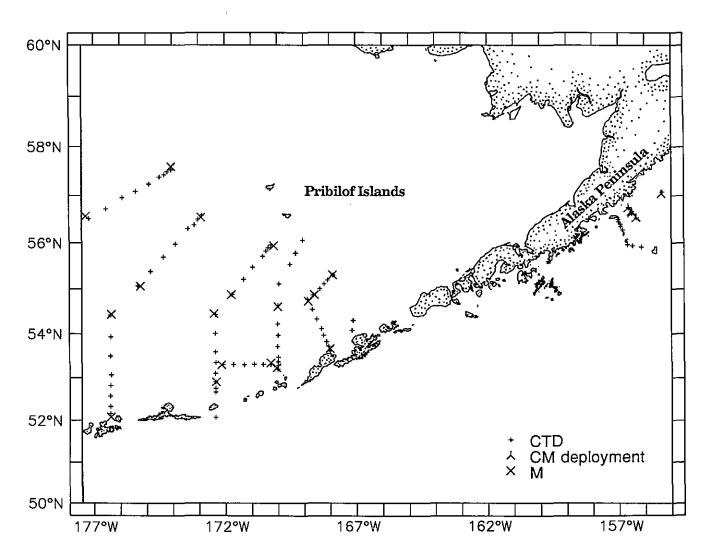


Figure 3. RIBS-87-I (MF-86-11) sampling stations.

TABLE 2. Sampling activities during RIBS-87-I (MF-86-11). See Table 1 for abbreviations.

D	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
Shel	ikof Strai	t T				
290	17 Oct	1320 1425 1526 1801 1853 2331	1 (147) 2 (148) 3 (149) 4 (150) 5 (151) 6 (158)	56 16.9 56 21.1 56 24.1 56 27.1 56 30.3 55 57.9	156 49.6 156 54.3 156 55.3 156 58.9 157 00.1 156 39.9	CTD CTD CTD CTD CTD CTD
291	18 Oct	0041 0309 2152	7 (156) 8 (153) 1	55 56.6 55 54.8 56 32.6	156 28.9 156 08.8 156 19.4	CTD CTD Deploy CM18
292	19 Oct	0006 0332 0452 0516 0616 0703 0820 1815 1841	2 3 4 9 10 11 12 5 13	56 38.6 56 40.2 56 44.9 56 45.0 56 40.3 56 38.0 56 32.2 57 02.4 57 04.7	156 29.0 156 30.0 156 37.2 156 36.4 156 29.6 156 29.3 156 19.0 155 21.8 155 19.9	Deploy CM17 Deploy CM16 Deploy CM15 CTD at CM15 CTD at CM16 CTD at CM17 CTD at CM17 CTD at CM18 Deploy CM19 CTD at CM19
Beri	ng Sea					
297	24 Oct	0218 0500 0716 0938 1233 1611 1914 2347	1 1 2 3 4 5 6 7	52 04.9 52 04.5 52 09.9 52 19.7 52 34.4 52 49.1 53 03.9 53 29.7	176 21.6 172 22.1 176 22.1 176 22.5 176 23.2 176 22.4 176 21.4 176 21.9	M at CTD1 CTD
298	25 Oct	0417 0827 0935 2145 2351	8 9 2 3 10	53 56.0 54 25.2 54 26.2 54 27.1 54 25.9	176 21.4 176 22.0 176 20.0 172 25.4 172 21.7	CTD CTD M at CTD9 M at CTD10 CTD
299	26 Oct	0322 0706 0941 1220 1500 1611 1834 1953	11 12 13 14 15 4 16 17	54 00.5 53 35.5 53 20.7 53 05.8 52 53.9 52 54.3 52 45.3 52 40.0	172 22.1 172 22.0 172 22.3 172 23.1 172 22.6 172 21.1 172 22.4 172 22.2	CTD

TABLE 2. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		· · · · · · · · · · · · · · · · · · ·				
300	27 Oct	0014	5	53 17.7	172 09.2	M at CTD18
		0227 0506	18 19	53 18.1 53 18.2	172 05.9 171 42.1	CTD CTD
		0306	20	53 17.8	171 42.1	CTD
		1022	21	53 18.7	170 54.4	CTD
		1251	22	53 18.6	170 33.7	CTD
		1501	6	53 20.5	170 16.3	M at CTD23
		1718	23	53 18.0	170 16.3	CTD
		1900 2034	7 24	53 13.8 53 11.9	170 02.9 169 59.8	M at CTD24 CTD
		2222	25	53 17.2	169 59.2	CTD
301	28 Oct	0007	26	53 22.0	169 59.5	CTD
		0215	27	53 28.2	169 59.2	CTD
		0511 0800	28 29	53 42.8	169 59.7	CTD CTD
		1050	30	53 58.1 54 13.5	169 58.6 169 59.9	CTD
		1440	31	54 38.0	169 59.4	CTD
		1548	8	54 36.7	169 59.4	M at CTD31
02	29 Oct	0043	9	53 39.9	168 00.3	M at CTD32
		0210 0345	32 33	53 37.0 53 42.8	168 00.1 168 03.6	CTD CTD
		0540	34	53 49.5	168 07.6	CTD
		0757	35	53 58.1	168 14.2	CTD
		1023	36	54 07.1	168 19.2	CTD
		1313	37	54 20.0 54 22.0	168 30.1	CTD CTD
		1559 1758	38 10	54 32.9 54 43.5	168 40.4 168 49.7	M at CTD39
		1938	39	54 46.2	168 51.8	CTD
		2146	40	54 52.0	168 37.9	CTD
100	20.0	2339	11	54 52.4	168 35.4	M at CTD40
303	30 Oct	0214 0421	41 42	55 00.6 55 06.9	168 23.1 168 13.0	CTD CTD
		0623	43	55 11.8	168 05.5	CTD
		0755	44	55 18.3	167 53.1	CTD
		0901	12	55 18.6	167 53.8	M at CTD44
		1653 1846	13	55 56.4	170 09.3	M at CTD45
		2019	45 46	55 57.4 55 53.6	170 15.7 170 21.7	CTD CTD
		2152	47	55 49.7	170 26.6	CTD
		2348	48	55 42.7	170 34.3	CTD
04	31 Oct	0243	49 50	55 28.7	170 57.5	CTD
		0536 0859	50 51	55 12.7 54 52.6	171 17.7 171 44.4	CTD CTD
		0839	14	54 52.6 54 52.4	171 44.4 171 46.0	M at CTD51
		2044	15	55 03.7	175 13.5	M at CTD52
		2231	52	55 04.1	175 19.3	CTD

TABLE 2. (cont.)

Ъ	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
	4 3 4	004-			1-1-0-1	
305	1 Nov	0217	53	55 22.9	174 50.4	CTD
		0912 1316	54 55	55 41.8	174 21.3 173 53.5	CTD CTD
		1737	55 56	55 58.6 56 18.1	173 33.3 173 23.8	CTD
		2002	57	56 23.1	173 23.8	CTD
		2301	58	56 30.4	173 03.2	CTD
306	2 Nov	0059	59	56 35.3	172 52.4	CTD
500	21101	0202	16	56 32.8	172 54.3	M at CTD59
		1135	<u>17</u>	57 35.7	174 02.9	M at CTD60
		1253	60	57 32.0	174 03.0	CTD
		1443	61	57 29.7	174 11.8	CTD
		1651	62	57 25.7	174 18.9	CTD
		1858	63	57 22.9	174 29.7	CTD
		2142	64	57 14.2	174 53.6	CTD
307	3 Nov	0047	65	57 05.2	175 23.9	CTD
		0338	66	56 57.3	175 54.7	CTD
		0711	67	56 43.2	176 31.8	CTD
		1025	18	56 33.9	177 18.1	M at CTD68
200	4.3.7	1226	68	56 31.0	177 11.3	CTD
308	4 Nov	1132	69 50	55 06.7	169 56.9	CTD
		1521	70	55 32.2	169 31.8	CTD
		1810	71 72	55 46.8	169 18.6	CTD
200	5 N	2110	72 73	56 03.5	169 02.7	CTD
309	5 Nov	0844 1125	73 74	54 18.0 54 04.9	167 06.5 167 09.0	CTD CTD
		1125	/4	J4 U4,9 	107 09.0	

3.2 FOCI-87-I

Scientific Party: Arthur W. Kendall, NWAFC, Chief Scientist

Richard Bates, NWAFC Michael Helser, NWAFC Jay Clark, NWAFC

Shailer Cummings, AOML David Neimann, AOML

Suam Kim, University of Washington

Tom Morrison (4/1-4/7), University of Washington

Peter Proctor (4/1-4/7), PMEL Hugh Milburn (4/11-4/17), PMEL

This cruise was intended to map the distribution of planktonic walleye pollock eggs in Shelikof Strait, and conduct several other tasks associated with FOCI.

A number of gears and methods were used to meet various cruise objectives (Table 1).

- 1. MARMAP 60-cm bongo tows (0.505-mm mesh) Surface to near-bottom oblique bongo tows were conducted to map the distribution and abundance of walleye pollock eggs. At some stations 20-cm bongo nets with 0.150-mm mesh and 60-cm bongos with 0.333-mm mesh were used to collect zooplankton and conduct larval extrusion experiments.
- 2. Tucker Trawls Several mechanical 1-m Tucker trawl tows were conducted, using 0.505-mm mesh and 1.4-mm mesh cod ends, to investigate predation by euphausids on walleye pollock eggs.
- 3. Diamond midwater trawl Two midwater trawl tows were made to collect adult pollock for reproductive biology studies and egg cannibalism studies.
- 4. MOCNESS discrete-depth plankton sampler tows Five MOCNESS tows, using eight nets on each, were made to investigate vertical distribution of zooplankton (tows included two day/night comparisons) and three tows were designed to investigate walleye pollock egg vertical distribution.
- 5. Net camera tows Three tows were made to investigate small-scale distribution (patchiness) of walleye pollock eggs.
- 6. CTD casts were made along FOCI line 8 and at mooring sites and deep drifter release sites. Nutrient samples were collected along FOCI line 8.
- 7. Satellite tracked drifters Three deep-drogued (200 m) drifters were released during the course of the cruise on FOCI line 8 to track movement of deep water in the vicinity of maximum walleye pollock spawning. Also a series of eight drifters drogued at 40 m was released along FOCI line 8.
- 8. Current meter/meteorological moorings A surface moored meteorological buoy (PEGGY), a subsurface current meter array, and a doppler current profiler were deployed.

9. Live walleye pollock eggs were sorted from some extra bongo tows to evaluate an acoustical egg sensor, and to provide samples of eggs to be measured live and preserved (at NWAFC).

The cruise was remarkably free of delays associated with equipment or weather. All sampling objectives, except an optional bongo survey south of the Trinity Islands were accomplished. Two breaks were made to exchange scientists at Larsen's Bay (Tom Morrison and Peter Proctor departed the ship on 7 April, Hugh Milburn joined the ship on 11 April).

After a coarse sounding survey for adult pollock based on results from the previous cruise (MF-87-03), two midwater trawl tows were made and sufficient walleye pollock were collected to satisfy sampling requirements. Based on our sounding survey, and work of the previous cruise, we laid out a stratified grid of 121 bongo stations which we occupied from 4-10 April (Figure 4a). We then performed CTD casts, zooplankton bongo tows, MOCNESS tows, and shallow drifter releases at stations on FOCI line 8. This was followed by Tucker trawls, a MOCNESS tow, and a net camera tow off Katmai Bay. We then proceeded to the mooring sites and deployed the three moorings. Following this we steamed to the Trinity Island area and began a bongo survey, which was aborted due to bad weather. After jogging to the lee of Chirikof Island until the seas subsided, we proceeded back into Shelikof Strait, visually inspecting PEGGY on the way. We made more bongo tows along FOCI line 8, two more MOCNESS tows for pollock eggs, and two unsuccessful net camera tows before breaking operations.

Although detailed analysis must await shore-side processing of the samples, some general observations can be made. Walleye pollock eggs were found throughout the area surveyed in Shelikof Strait. They appeared most abundant on the Alaska Peninsula side of the Strait from Cape Kuliak to Portage Bay. These are the areas where the eggs have been abundant in previous years. The distribution pattern seemed more even than in previous years, with many stations over a wide area containing moderate numbers of eggs. Vertically, the MOCNESS tows indicated that most eggs were between 190 and 230 m, with few eggs above 100 m.

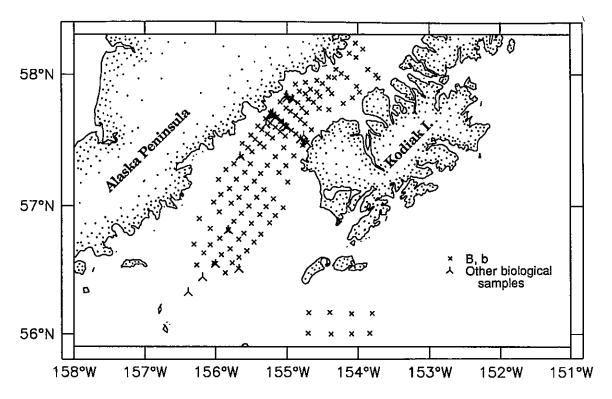


Figure 4a. FOCI-87-I (MF-87-04) biological sampling stations.

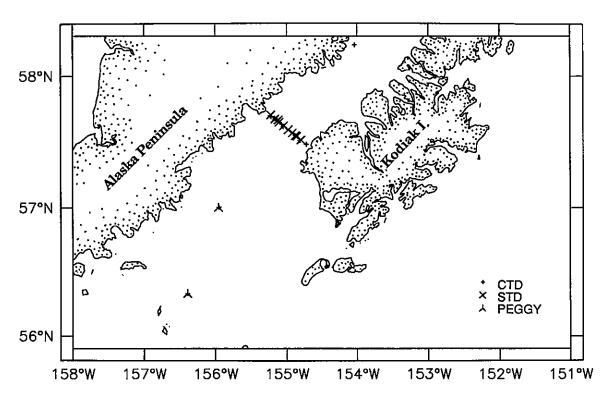


Figure 4b. FOCI-87-I (MF-87-04) physical sampling stations.

TABLE 3. Sampling activities during FOCI-87-I (MF-87-04), 2-17 April 1987. See Table 1 or footnotes for abbreviations.

CRUISE - 2MF87

ΊD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
93	03 Apr	0190 0940		57 40.5 57 40.1	155 08.7 155 07.3	CTD Deploy STD (200-m
94	04 Apr	0300 1311 1935 2017 2131 2225 2318	G001A G002A G003A G004A G005A	56 27.0 57 37.5 58 09.5 58 07.7 58 02.3 57 59.7 57 58.4	156 11.1 155 17.7 154 07.3 154 01.5 153 51.5 153 44.8 153 42.7	drogue) MWT, XBT ¹ MWT B B B B B
95	05 Apr	0058 0200 0414 0601 0643 0734 0812 0917 1055 1139 1241 1318 1404 1437 1533 1700 1737 1822 1911 2009 2041 2123 2213 2255 2338	G006A G007A G008A G009A G010A G011A G012A G013A G014A G015A G016A G017A G018A G019A G020A G021A G022A G022A G022A G023A G024A G025A G025A G026A G027A G028A G029A G030A	58 11.4 58 14.1 58 02.3 58 00.4 57 58.6 57 54.7 57 52.1 57 49.5 57 58.8 57 57.3 57 56.0 57 53.3 57 51.4 57 46.9 57 50.1 57 52.1 57 52.1 57 53.3 57 56.4 57 55.6 57 52.4 57 51.3 57 48.8 57 47.4 57 44.7	153 55.7 154 02.0 154 18.6 154 14.1 154 09.3 154 01.1 153 58.7 154 04.6 154 19.9 154 24.8 154 34.7 154 30.1 154 25.2 154 12.5 154 32.3 154 34.8 154 34.8 154 40.3 154 44.5 154 53.1 154 49.7 154 47.7 154 37.8 154 33.0	B B B B B B B B B B B B B B B B B B B

¹ XBT - expendable bathythermograph.

² MOC-Z indicates tows for zooplankton; depth intervals = 0-10, 10-20, 20-30, 30-50, 50-75, 75-100, 100-150, 150-200; MOC-E is for tows for eggs; depth intervals = 0-50, 50-100, 100-150, 150-170, 170-190, 190-210, 210-230, 230-250.

³ PEGGY - meteorological buoy.

⁴ ACM - acoustic current meter.

⁵ EXTR.EXP - pollock larvae extrusion experiment.

TABLE 3. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
 96	06 Ann	0042	G031A	57 44.1	154 24.6	D
90	06 Apr	0205	G031A G032A	57 44.1 57 42.7	154 43.7	B B
		0245	G033A	57 44.8	154 47.6	В
		0354 0517	G034A G036A	57 47.3 57 50.3	154 50.9 155 00.8	В
		0653	G030A G037A	57 47.6	155 06.0	B B
		0743	G038A	57 44.8	155 00.8	В
		0827	G039A	57 43.3 57 41 4	154 57.2	В
		0912 0954	G040A G041A	57 41.4 57 39.6	154 52.9 154 49.0	B B
		1035	G042A	57 37.7	154 45.0	В
		0424	G035A	57 49.4 57 24 0	154 56.0	В
·		1122 1216	G043A G044A	57 34.9 57 29.0	154 39.5 154 46.3	B B
		1303	G045A	57 33.0	154 52.7	В
		1347	G046A	57 34.7	154 56.5	В
		1433 1520	G047A G048A	57 36.7 57 38.8	155 00.4 155 04.6	B B
		1618	G049A	57 40.9	155 08.4	B
		1700	G050A	57 42.1	155 11.3	В
		1753 1838	G051A G052A	57 40.0 57 38.0	155 18.1 155 14.2	B B
		1925	G052A G053A	57 36.0 57 36.1	155 14.2	В
		1958	G054A	57 34.1	155 05.9	В
		2039	G055A G056A	57 32.1 57 31.2	155 01.7 155 12.3	B B
		2139 2226	G050A G057A	57 33.1	155 16.6	В
		2315	G058A	57 34.9	155 21.3	В
07	07 4	2355	G059A	57 36.6	155 24.6	В
97	07 Apr	0048 0135	G060A G061A	57 32.5 57 30.6	155 30.6 155 27.0	B B
		0225	G062A	57 28.6	155 23.0	B
		0308	G063A	57 27.1	155 19.5	В
		0437 0613	G064A G065A	57 18.7 57 15.4	155 16.8 155 06.9	B B
		0712	G066A	57 11.0	154 59.6	В
		0814	G067A	57 18.6	155 01.0	В
98	08 Apr	0908 0136	G068A G069A	57 23.1 57 26.8	154 54.3 155 02.9	B B
/0	oo Api	0236	G070A	57 22.6	155 02.9	В
		0408	G071A	57 14.9	155 22.4	В
		0514 0612	G072A G073A	57 19.4 57 24.9	155 31.0 155 29.7	B B
		0612	G073A G074A	57 24.9 57 26.8	155 29.7 155 33.0	В
		0745 0853	G075A G076A	57 28.7 57 22.8	155 37.7 155 38.4	B B

TABLE 3. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
99	09 Apr	0953 1054 1146 1241 1336 1432 1520 1627 1736 1832 1938 2046 2206 2308 0002 0059 0200 0254 0355 0459 0605 0724 0908 1011 1155 1335 1502 1713 1925 2041 2149 2259 2354 0059 0206 0301	G077A G078A G079A G080A G081A G082A G083A G084A G085A G086A G087A G088A G090A G091A G091A G092A G091A G095A G096A G097A G096A G097A G101A G101A G101A G102A G101A G102A G101A G101A G102A G104A G105A G106A G107A G108A G109A G110A G111A G112A	57 19.4 57 15.5 57 11.4 57 07.5 57 03.2 56 59.2 56 55.5 56 59.7 57 04.0 57 08.2 57 12.1 57 08.0 57 03.9 56 56.0 56 59.9 56 56.0 56 52.2 56 46.9 56 51.9 56 56.6 57 01.2 57 05.2 57 01.7 56 57.2 56 54.1 56 42.2 56 49.5 56 49.5 56 49.5 56 52.8 56 48.5 56 48.5 56 33.4 56 37.3	155 44.7 155 35.5 155 27.6 155 19.5 155 11.6 155 03.4 155 10.0 155 17.7 155 25.6 155 34.2 155 42.7 155 51.4 155 57.6 155 48.4 155 32.2 155 23.1 155 14.8 155 22.0 155 30.2 155 30.2 155 38.5 155 47.0 155 55.7 156 01.6 155 57.0 156 13.8 156 18.3 156 18.3 156 04.7 155 44.8 155 49.5 155 49.5 155 56.6 156 04.6 156 10.0 156 10.0 156 10.0 156 11.4 155 55.3	B B B B B B B B B B B B B B B B B B B
		0301 0401 0502 0552 0654 0748 0843 0932 1031 1201 2228	G112A G113A G114A G115A G116A G117A G118A G119A G120A G121A G122A (61)	56 40.1 56 44.5 56 47.3 56 43.2 56 39.1 56 36.1 56 33.5 56 28.8 56 31.0	155 55.3 155 47.9 155 40.7 155 36.3 155 27.9 155 33.9 155 40.5 155 46.2 155 52.0 155 41.0 155 11.8	B B B B B B B B MOC-Z-1 ²

TABLE 3. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
101	11 Apr	0245 0503	G123A (61) G124A (60)		155 13.2 155 10.1	B,b,CTD,N B,b,CTD,N,STD
		0724	(59)		155 04.4	(200-m drogue) CTD
		0916 1030	G125A (58) G126A (61)	57 37.1 57 41.6	155 03.1 155 11.9	B,b,CTD,N MOC-Z-2
		1245	(61)	57 42.1	155 14.0	CTD,N
		1444	(57)	57 33.3 57 36 3	154 53.0	CTD MOC 7.2
102	12 Apr	2240 0209	G127A (58) G128A (56)	57 36.3 57 32.5	155 00.2 154 46.1	MOC-Z-3 MOC-Z-4
102	120 11.01	0443	G129A (56)		154 48.8	B,b,CTD,N
		0610	G130A (55)	57 29.1	154 43.5	B,b,CTD,N
		0634 0649		57 31.1	154 47.9	Deploy STD
		0703		57 32.8 57 34.3	154 51.6 154 55.4	Deploy STD Deploy STD
		0715		57 35.8	154 58.8	Deploy STD \40-m
		0729		57 37.6	155 02.6	Deploy STD drogue
		0743 0757		57 39.2 57 40.7	155 06.4 155 10.0	Deploy STD Deploy STD
		0810		57 42.5	155 13.5	Deploy STD
		0918	G131A (58)	57 36.3	155 00.8	MOC-Z-5
		1232 1330	G132A G132B	57 49.5 57 49.3	154 59.9 155 00.3	T T
		1751	G132C	57 50.4	155 01.3	T
		1833	G132D	57 51.1	155 59.9	T
		1954 2158	G133A G132E	57 48.8 57 50.9	154 55.0 155 00.2	MOC-E-6 T
		2206	01322	57 49.2	154 55.6	CAM
103	13 Apr	0726		57 00.1	155 57.4	Deploy PEGGY ³
		0801 1108	G134A	57 00.2 56 30.9	155 57.0 155 40.5	CTD T
		1817	015-77	56 20.1	156 23.2	Deploy ACM ⁴
		1844		56 19.9	156 23.1	at PEGGY CTD
		2118		56 19.9	156 23.1	Deploy ADCP#2 at PEGGY
104	14 Apr	0459	G135A	56 09.3	154 42.4	В
		0614	G136A	56 09.6	154 43.0	В
		0743 0936	G137A G138A	56 09.6 56 09.8	154 05.4 153 48.0	B B
		1112	G139A	56 00.4	153 50.1	В
		1239	G140A	56 00.1	154 05.5	B B
		1412 1724	G141A G142A	56 00.0 56 00.4	154 22.9 154 42.4	B B
105	15 Apr	2231	G142A G143A	56 33.2	156 00.2	B,b,EXTR.EXP ⁵
106	16 Apr	0047	G144A	56 49.0	155 49.4	B,b,EXTR.EXP

TABLE 3. (cont.)

Ъ	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		0224		57.00.4	155 50 0	I DECCY
		0234 0753	G145A	57 00.4 57 23.0	155 58.8 155 39.5	Inspect PEGGY MOC-E-7
		1239			153 39.3	
			G146A (55)			B,b
		1318	G147A (56)		154 45.9	B,b
		1412	G148A (57)	57 33.1	154 52.8	B,b,CTD,STD (200-m drogue)
		1737	G149A (58)	57 36.6	155 00.8	B,b
		1823	G150A (59)		155 05.7	B,b
		1922	G151A (60)		155 11.3	B,b
		1957	G152A (61)		155 14.1	B,b
		2052	(0 4)	57 42.7	155 11.9	MOC-E-8
107	17 Apr	0006	(61)		155 12.3	CAM
-0,		0139	(61)		155 13.7	CAM
					•	

3.3 FOCI-87-II

Scientific Party: Lewis Incze, PMEL & NWAFC, Chief Scientist

Shailer Cummings, AOML

Jay Clark, NWAFC
Carol DeWitt, PMEL
Deborah Siefert, NWAFC
Deborah Blood, NWAFC
Kathleen MacCauley, NWAFC
Jeff Napp, RSMAS/Univ. Miami

Mike Helser, NWAFC

The principal accomplishments of this cruise were the following: physical and biological time-series measurements made along lines 8, 16 and 17; satellite-tracked drifters deployed for a circulation study and the region of their transit examined with CTD transects; the distribution and abundance of larval pollock sampled (for interannual time-series); and vertical distribution of zooplankton and larval pollock studied in late May at finescale in the upper water column at 0-15, 15-30, 30-45, 45-60, 60-80, 80-100 m (deeper samples were 100-125, 125-150 or 100-150, 150-bottom). Larval growth studies included shrinkage with net handling and morbidity/mortality, shrinkage and dry-weight loss on preservation, larval fresh dry-weights, and samples for examining otoliths and RNA/DNA ratios. Additional studies included periodicity of zooplankton gut fluorescence (Napp), acoustic target measurements of size-fractionated zooplankton (on board, Cummings), collection of acoustical echogram data (12, 38, and 50 kHz) during diel MOCNESS tows, and dry weights of *Neocalanus* spp. copepods. Diel studies concentrated on contrasting larval and zooplankton movements. Data collections will permit investigation of age- and/or size-dependent differences in larval migrations (see Phase III below).

Phase I consisted of sampling and satellite-tracked drifter deployments along FOCI line 8.

A dozen samples were obtained during Phase II for Soviet scientists (Sta. 26, 28, 31, 33, 36, 38, 41, 43, 45, 47, 50, 52). Twenty-four replicate samples (second side of bongo sampler) were counted for pollock larvae to provide a real-time estimate of distribution and abundance to focus later sampling on this cruise. These larvae were saved for otolith work. Special collections also were made during this phase (as marked in Table 4, "ExB").

Phase III began with station 72, located east of Sutwik Island where larval numbers were consistently the highest and flow characteristics perhaps the least complex. Sampling continued for about 55 hours at a geographically fixed site. The objective was to sample the diel distribution of larval pollock and zooplankton, focusing on possible crepuscular movements. To do this we centered MOCNESS sampling on solar midday, solar midnight, and at 20 degrees solar angle above the horizon at dawn and dusk. After each MOCNESS tow, an oblique bongo tow was taken. The sample from one side of the sampler was preserved in formalin; pollock larvae were removed from the other side and preserved in ETOH for otolith (age) examination. This will be investigated if size-differences appear in analysis of vertical movements. Camera tows at

midday and midnight were added to the suite of observations on the second day of sampling. During the course of experimental collections we often drifted 4 nm to the southwest (232°T) and found extremely clear water — evidenced by unclogged nets and good downward visibility. This "clear water" condition persisted through the 50+ hours of the diel studies despite 30+ knot winds and 8-foot seas on the second day. We investigated the contrast and transition between these sites in a series of CTD casts, bongo tows, nutrient and chlorophyll casts, and a continuous trace of T, S and *in vivo* fluorescence collected by towing the net-camera from station 80 to 81. (Neither the net nor camera were operating for this, as the transect was too long).

The first of three visits to the meteorological buoy component of PEGGY showed the wind-speed rotor was not functioning (20 May, 0445 GMT) despite 18-knot winds; the wind vane (direction) was responsive. A subsequent bypass on 25 May could detect no transmission on the satellite uplink sensor. The float is awash in a 3-foot sea or more. On 28 May the antenna was replaced at 1816 GMT, still with no transmission detectable from the vessel. Water was noted where the antenna cable enters the transmitter box.

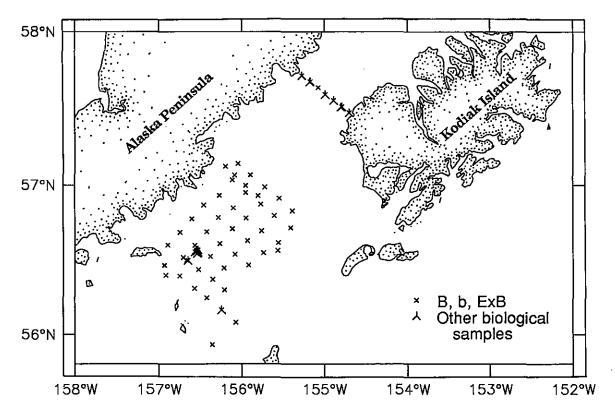


Figure 5a. FOCI-87-II (MF-87-06) biological sampling stations.

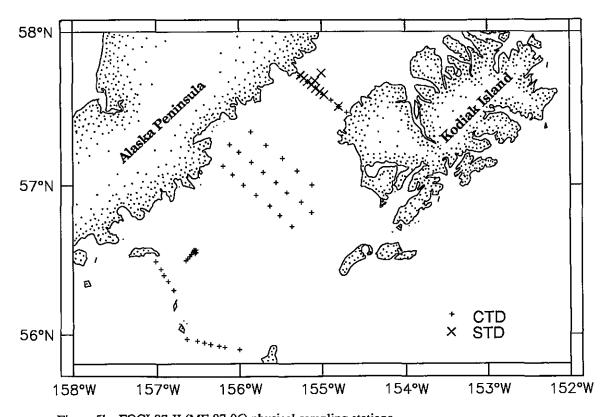


Figure 5b. FOCI-87-II (MF-87-06) physical sampling stations.

TABLE 4. Station locations, times and sampling activities during FOCI-87-II (MF-87-06). See Table 1 or footnotes for abbreviations.

JD.	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments		
PHASE I: Line 8 Studies and Drifter Deployments								
139	19 May	0744 1357	1 (56) 2 (60)	57 30.69 57 40.63	154 47.93 155 09.88	CTD, MOC CTD, N, MZ, MOC, B, b		
		1736 1945 2315	3 (61) 4 (60) 5 (56)	57 43.00 57 40.53 57 30.89	155 15.94 155 10.24 154 47.23	CTD, N, MZ, B, b CTD, MOC CTD, MOC, B, b, CAM		
140	20 May	0311 0525 0719 0932 1130 1122 1132 1142 1153 1211 1246 1256 1306 1339	6 (55) 7 (57) 8 (58) 9 (59) 10 (61) 11 12 13 14 15 16 17 18 19 (56)	57 28.54 57 33.32 57 35.64 57 38.32 57 43.12 57 41.93 57 40.65 57 39.43 57 41.00 57 43.92 57 37.97 57 36.78 57 35.48 57 30.87	154 41.96 154 53.03 154 59.07 155 04.12 155 15.23 155 12.69 155 10.03 155 07.00 155 04.88 155 00.22 155 04.00 155 00.98 154 58.08 154 47.58	CTD, N, MZ, B, b CTD, B, b CTD, N, MZ, B, b, CTD, B, b Deploy STD #7220 Deploy STD #7221 Deploy STD #7223 Deploy STD #7233 Deploy STD #7239 Deploy STD #7240 Deploy STD #7241 Deploy STD #7241 Deploy STD #7242 Deploy STD #7243 Deploy STD #7243		

PHASE II: Ichthyoplankton Survey, Special Collections, and CTD Transects at FOCI Sections 2 and 3

141 21 May	1712 1858 2028 2150 2311 0012 0122 0230 0342	20 21 22 23 24 25 26 27 28	57 08.54 57 04.06 56 59.21 56 54.71 56 49.79 56 43.03 56 47.85 56 52.45 56 57.02	156 02.79 155 53.47 155 42.99 155 32.57 155 22.99 155 24.25 155 36.10 155 45.95 155 56.91	B B B B B B B
------------	--	--	--	---	---------------------------------

ExB - Experiment Bongo to collect live animals.

Live Net - slow vertical tow of bongo net with taped cod end for collecting undamaged zooplankton.

Acoustic target strength of size-fractionated zooplankton community conducted on board by Cummings.

Acoustic data were recorded at 12, 38, and 50 kHz to correlate with MOCNESS catches. Data also were recorded between MOCNESS tows to supply temporal information.

TABLE 4. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		<u> </u>				
Detoi	ur to get pos	sition fix o	n PEGGY @	56 59.78	155 57.02	
		0527	29	57 02.06	156 06.75	B, ExB ¹
		0628	30	56 55.88	156 16.24	В
		0737	31	56 50.94	156 06.13	В
		0915	32	56 46.86	155 56.78	B, ExB
		1034	33	56 41.77	155 45.49	В
		1153 1300	34 35	56 37.04 56 32.07	155 33.21	В
		1420	36	56 32.97 56 37.84	155 44.00 155 55.80	B B
		1551	37	56 42.62	156 06.84	B
		1702	38	56 47.09	156 17.01	B
		1832	39	56 52.06	156 27.54	B, ExB
		1928	40	56 46.59	156 36.24	B
		2043	41	56 41.43	156 25.41	В
		2259	42	56 36.66	156 15.98	B, ExB
42	22 May	0011	43	56 32.34	156 05.03	В
		0125	44 45	56 28.09	155 54.99	В
		0303 0501	45 46	56 26.91 56 31.53	156 12.97 156 22.77	B B, ExB
		0632	47	56 35.95	156 34.18	B, Exb
		0747	48	56 41.14	156 44.72	В
		0929	49	56 36.09	156 53.56	B, ExB
		1032	50	56 31.03	156 42.55	В
		1145	51	56 26.20	156 31.46	В
		1257	52	56 22.33	156 21.23	В
		1408	53	56 17.97	156 12.73	В
		1602 1736	54 55	56 04.95 56 09.97	156 04.32	B B EvB Agoustic
					156 14.64	B, ExB, Acoustic sample ²
		1918	56	56 14.85	156 25.29	В
		2036	57 59	56 18.66 56 22 65	156 34.47	B
		2154 2307	58 59	56 23.65 56 27.92	156 45.10 156 55.96	B, ExB B
43	23 May	0018	60 (151)	56 29.60	157 00.88	CTD
. 15	25 1444	0106	61 (150)	56 26.37	156 57.10	CTD
		0139	62 (149)	56 23.90	156 55.08	CTD, B, b
		0158	63 (148)	56 21.47	156 52.05	CTD
	•	0309	64 (147)	56 17.91	156 48.03	CTD
		0505	65 (158)	55 58.04	156 38.37	CTD
		0621	66 (157)	55 57.29	156 30.78	CTD
		0708 0753	67 (156)	55 56.53	156 25.73	CTD P h
		0753 0947	68 (155) 69 (154)	55 55.84 55 55.13	156 21.42 156 15.16	CTD, B, b CTD
		1033	70 (153)	55 54.64	156 11.03	CTD
		1135	71 (152)	55 53.73	156 00.13	CTD
			(102)	00 00113	150 00.15	

TABLE 4. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
PHA:	SE III: Die	el Studies	and Special Co	llections		
		1544	72	56 32.72	156 32.43	CTD, MOC, Acoustic record ³ , B, ExB, Live Net ⁴
		2148	73	56 33.81	156 32.93	CTD, Chl, MZ, MOC, Acoustic record, B, ExB, Live Net
144	24 May	0401	74	56 34.08	156 33.06	CTD, N, Chl, MOC, Acoustic record, B (0-15 m), b (0-15 m), B, Live Net
		0947	75	56 33.10	156 31.82	CTD, MZ, Chl, MOC, Acoustic record, B, ExB (3)
		1509	76	56 33.85	156 32.61	CTD, Chl, MOC, Acoustic record, B, ExB (4)
		2108	77	56 33.65	156 32.61	CTD, MZ, Chl, CAM, MOC, Acoustic record, B, ExB, Chl (fluorometer calibr.)
145	25 May	0442	78	56 33.90	156 32.74	CTD, N, Chl, MOC, Acoustic record, B, ExB (2)
		0934	79	56 34.12	156 31.89	CTD, MZ, Chl, MOC, Acoustic record, CAM, B, ExB (2)
		1548	80	56 29.91	156 39.12	CTD, N, Chl, B, b, Camera transect (to 56 34.32, 156 32.67; T, C and fluoro- meter only)
		1925	81	56 33.93	156 32.81	CTD, N, Chl
		2035	82	56 33.37	156 33.91	CTD
		2106 2140	83 84	56 32.43 56 31.51	156 35.04 156 36.24	CTD CTD
		2218	85	56 30.52	156 37.67	CTD
		2248	86	56 29.87	156 39.10	CTD

TABLE 4. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments			
PHA:	PHASE IV: CTD Grid (Upper Strait) and Plankton Collections								
146	26 May	0242 0341 0452	87 (105) 88 (104) 89 (103)	57 07.43 57 03.95 56 59.86	156 11.91 156 05.03 155 56.96	CTD, ExB CTD, ExB CTD, ExB			
	k on PEGG ce antenna.	Y transmissi	on with satell	ite uplink sens	or; no response.	Sea state too rough to			
		0600 0724 0822 0922 1032 1120 1213 1315 1427 1532 1641 1742 1856 2002 2109 2211 2318	90 (102) 91 (101) 92 (100) 93 (99) 94 (88) 95 (89) 96 (90) 97 (91) 98 (92) 99 (93) 100 (94) 101 (95) 102 (84) 103 (82) 104 (80) 105 (78) 106 (76)	56 55.85 56 51.46 56 47.90 56 43.43 56 49.0 56 53.22 56 56.88 57 00.79 57 04.89 57 08.83 57 12.95 57 15.92 57 20.88 57 15.52 57 10.55 57 05.53 57 00.03	155 47.91 155 37.93 155 30.47 155 21.66 155 07.42 155 15.08 155 25.46 155 33.34 155 42.64 155 51.17 156 00.21 156 06.96 155 51.43 155 40.35 155 28.51 155 17.94 155 07.31	CTD, ExB CTD			
PHASE V: Return to Diel Site for Special Collections (Larval Biology/Zooplankton Feeding)									
147	27 May	0835-2102 2230 0007	107 108 109	56 33.87 56 33.68 56 33.36	155 33.60 156 33.19 156 33.99	ExB (17) CTD, N, B, CAM CAM, ExB			
148	28 May	0210-0507 0610-1347	110	56 33.28 56 29.99	156 33.72 156 40.02	ExB (7) ExB (8)			

Return to PEGGY buoy @ 56 59.85, 155 57.17 @ 1749 GMT; replace antenna; still no satellite signal detected.

3.4 RIBS-87-II

Scientific Party: Andrew T. Roach, PMEL, Chief Scientist

Carol DeWitt, PMEL David Kachel, PMEL

This cruise had three objectives: 1) occupy the FOCI CTD line 8 in Shelikof Strait, 2) deploy moorings in Unimak, Amukta, and Amchitka Passes in the Aleutian Islands, and 3) occupy lines of CTDs in the Bering Sea in the vicinity of the date line.

CTDs at line 8 in Shelikof Strait continued the long-term sampling of water properties at these stations. The moorings were designed to monitor exchange of water between the Gulf of Alaska and Bering Sea through three of the larger passes through the Aleutian Islands. CTDs in the Bering Sea (Figure 6), together with those of RIBS-87-I, will elucidate regional circulation and water properties.

Table 5 lists stations and activities accomplished during RIBS-87-II including 57 CTDs, 10 Tucker trawls, 6 nutrient stations, and 3 mooring deployments.

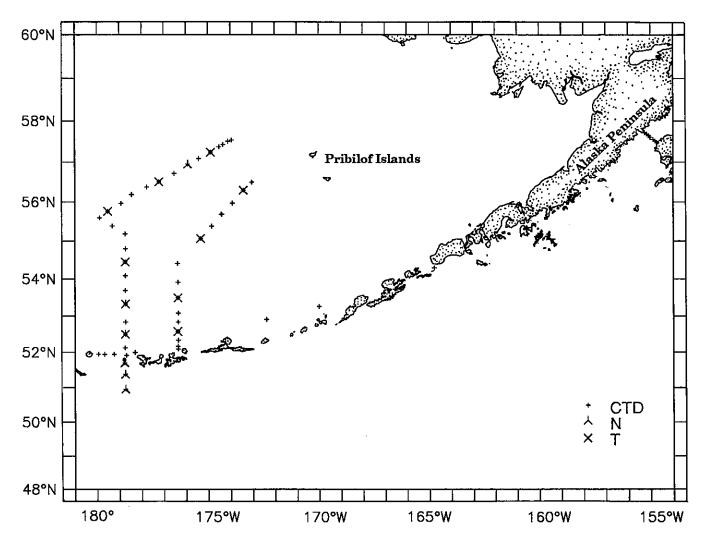


Figure 6. RIBS-87-II (MF-87-07) sampling stations.

TABLE 5. Station locations, times, and activities during RIBS-87-II (MF-87-07). See Table 1 for abbreviations.

Ъ	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
154	3 Jun	0828 0911 0952 1042	1 (055) 2 (056) 3 (057) 4 (058)	57 28.42 57 31.03 57 33.25 57 36.38	154 42.86 154 46.92 154 52.41 155 00.54	CTD CTD CTD CTD
155	4 Jun	1127 1216 1307 2302	5 (059) 6 (060) 7 (061) 8 (UNI)	57 38.48 57 40.89 57 43.10 54 17.82	155 04.23 155 10.00 155 15.41 164 45.98	CTD CTD CTD CTD
158	7 Jun	0450 0708 0944 1359 1635	9 (093) 10 (095) 11 (097) 12 (099) 13 (101)	51 56.89 51 56.72 51 56.76 51 54.56 51 59.85	-179 56.60 -179 40.06 -179 14.91 -178 41.89 -178 18.40	CTD CTD CTD CTD CTD CTD
159	8 Jun	0422 0900 1319 1637 1938 2342	14 (075) 15 (076) 16 (077) 17 (078) 18 (079) 19 (080)	50 57.37 51 22.97 51 42.21 52 07.67 52 30.07 52 50.41	-178 44.24 -178 44.67 -178 46.41 -178 45.12 -178 44.88 -178 43.78	CTD,N CTD,N CTD,N CTD CTD,N,T CTD
160	9 Jun	0334 0751 1100 1359 1708 2001	20 (081) 21 (082) 22 (083) 23 (084) 24 (085) 25 (086)	53 19.71 53 41.91 54 05.28 54 27.17 54 48.10 55 11.25	-178 44.26 -178 44.67 -178 44.49 -178 44.61 -178 44.23 -178 45.03	CTD,N,T CTD CTD CTD,T CTD CTD
161	10 Jun	2340 0302 0618 1034 1341 1707	26 (087) 27 (088) 28 (089) 29 (090) 30 (091) 31 (092)	55 23.55 55 36.13 55 46.12 55 58.37 56 11.53 56 22.81	-179 19.52 -179 52.92 179 31.54 178 55.69 178 27.00 177 46.02	CTD CTD CTD,T CTD CTD CTD
162	11 Jun	2021 0039 0432 0800 1106 1402 1601	32 (068) 33 (067) 34 (066) 35 (065) 36 (064) 37 (063) 38 (062)	56 30.58 56 43.39 56 57.02 57 04.97 57 14.28 57 22.55 57 25.65	177 12.95 176 31.65 175 54.94 175 25.06 174 52.94 174 30.77 174 20.01	CTD,T CTD CTD,N CTD CTD,T CTD CTD
163	12 Jun	1801 1920 0132 0422 0800 1050 1353	39 (061) 40 (060) 41 (058) 42 (056) 43 (055) 44 (054) 44 (054)	57 30.28 57 32.12 56 30.10 56 17.91 55 58.40 55 41.49 55 41.09	174 06.88 173 57.27 173 02.17 173 25.49 173 54.96 174 24.93 174 23.21	CTD CTD CTD CTD,T CTD CTD CTD CTD

TABLE 5. (cont.)

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		1514	45 (050)	55.00.06	174.50.06	CHID
		1714 2045	45 (053) 46 (052)	55 22.96 55 03.95	174 50.96 175 20.36	CTD CTD,T
164	13 Jun	0301	47 (009)	54 24.74	176 22.90	CTD,1
104	15 Juli	0644	48 (008)	53 54.77	176 22.36	CTD
		0953	49 (007)	53 29.90	176 22.10	CTD,T
		1327	50 (006)	53 04.90	176 22.10	CTD
		1559	51 (005)	52 50.33	176 21.95	CTD
		2116	52 (004)	52 34.81	176 22.60	CTD,T
165	14 Jun	0017	53 (003)	52 20.14	176 21.67	CTD
		0216	54 (002)	52 09.98	176 22.46	CTD
		0405	55 (001)	52 05.52	176 21.97	CTD
		1647	56 (015)	52 54.37	172 23.08	CTD
166	15 Jun	0037	57 (025)	53 15.55	170 00.67	CTD

3.5 FOCI-87-III

Scientific Party: Sarah Hinckley, NWAFC, Chief Scientist

Richard Bates, NWAFC
William Rugen, NWAFC
James Schumacher, PMEL
Carol DeWitt, PMEL
Thomas Jackson, PMEL
Gregory Green, Envirosphere
Gary Carter, Envirosphere

FOCI-87-III was conducted from 16 June to 3 July, 1987 from the NOAA ship *Miller Freeman*. This cruise was the first leg of a two-part survey with the following objectives: (1) examine the distribution and biology of late-larval and early juvenile pollock between Kodiak Island and Unimak Pass; (2) collect information on zooplankton distribution and abundance; (3) collect temperature and salinity (CTD) data; and (4) recover 12 and deploy 4 current moorings.

The Methot trawl (a frame trawl with a modified IK [Isaacs-Kidd] depressor, 2.5 meter square steel frame, and 2×3 mm oval mesh net), proved effective in catching late larvae and early juveniles ranging in size from 10.9 to 41.5 mm standard length. A total of 76 Methot tows were completed during FOCI-87-III, including 4 short tows for live samples, and one set of three replicate tows. The net was deployed off the stern in an oblique or stepped manner. All pollock were sorted out from the Methot samples onboard, and were preserved for ageing and growth studies and stomach content analysis. In addition, fifteen 60-cm and three 20-cm bongo tows, eight Tucker trawls, and 30 CTDs were completed. Weather permitted only five current meter moorings to be recovered and three to be deployed. Figure 7 show the locations of stations, Table 6 provides an operations summary.

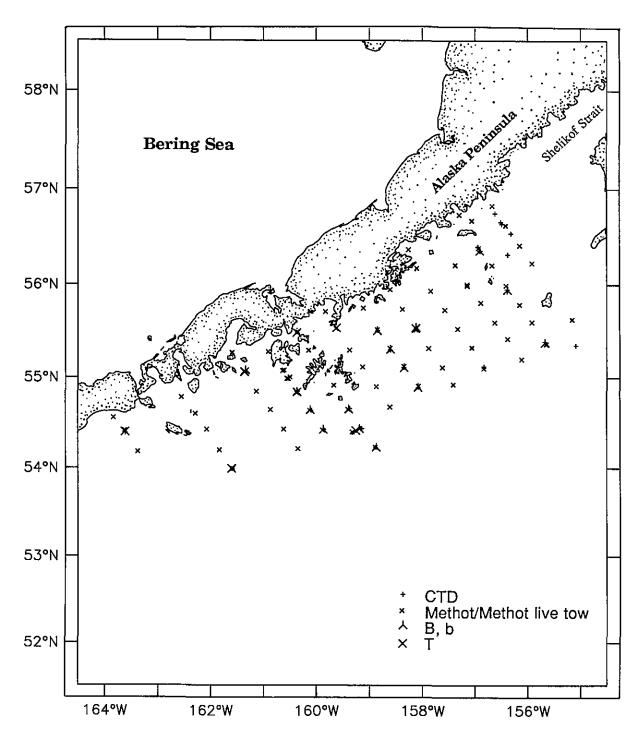


Figure 7. FOCI-87-III (MF-87-08) sampling stations.

TABLE 6. Station locations, times, and sampling activities during FOCI-87-III (MF-87-08). See Table 1 or footnotes for abbreviations.

JD	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
169	18 Jun	1700 1839 1913 1945	G001A G002A G002A G002A	54 33.5 54 23.4 54 24.1 54 24.9	163 50.0 163 36.6 163 36.9 163 37.4	Methot CTD T Methot
170	19 Jun	2218 0426 0445 0602 0752 0934 1104 1409 1933 2250	G003A G004A G004A G005A G006A G007A G008A G009A G010A	54 10.9 53 59.4 53 59.6 53 59.6 54 12.0 54 25.7 54 36.2 54 46.9 55 16.2 55 03.8	163 22.7 161 35.4 161 35.9 161 35.0 161 50.0 162 04.3 162 17.2 162 33.1 161 35.7 161 21.2	Methot CTD T Methot
171	20 Jun	2311 0014 0210 0356 0536 0723 1005 1025 1050 1246 1301 1320 1459 1530 1548 1612 1748 1816 1841 2021	G010A G010A G010A G011A G012A G013A G014A G015A G015A G015A G016A G016A G016A G017A G017A G017A G017A G017B L017B L017B G018A	55 03.7 55 04.9 54 50.9 54 26.0 54 12.9 54 25.8 54 25.9 54 25.3 54 38.4 54 38.9 54 38.5 54 50.5 54 50.5 54 50.0 55 00.3 54 59.2 54 59.5 55 04.8	161 21.5 161 20.4 161 07.6 160 51.8 160 36.8 160 20.7 159 51.6 159 52.0 159 52.9 160 06.0 160 07.2 160 07.2 160 21.6 160 21.6 160 22.0 160 30.0 160 32.0 160 33.5 160 36.5	T B Methot Methot Methot Methot CTD B Methot CTD
172	21 Jun	2021 2057 0110 0431 0522 0618 0756 1135 1504	L018A G019A G020A L020A G020A G021A G022A G023A	55 04.4 55 16.8 55 29.5 55 29.5 55 29.1 55 17.7 54 55.0 54 39.6	160 36.3 160 38.2 160 54.6 160 21.0 160 22.0 160 22.1 160 08.7 159 40.6 159 22.2	Methot — Live tow Methot Methot Methot — Live tow T Methot Methot Methot CTD

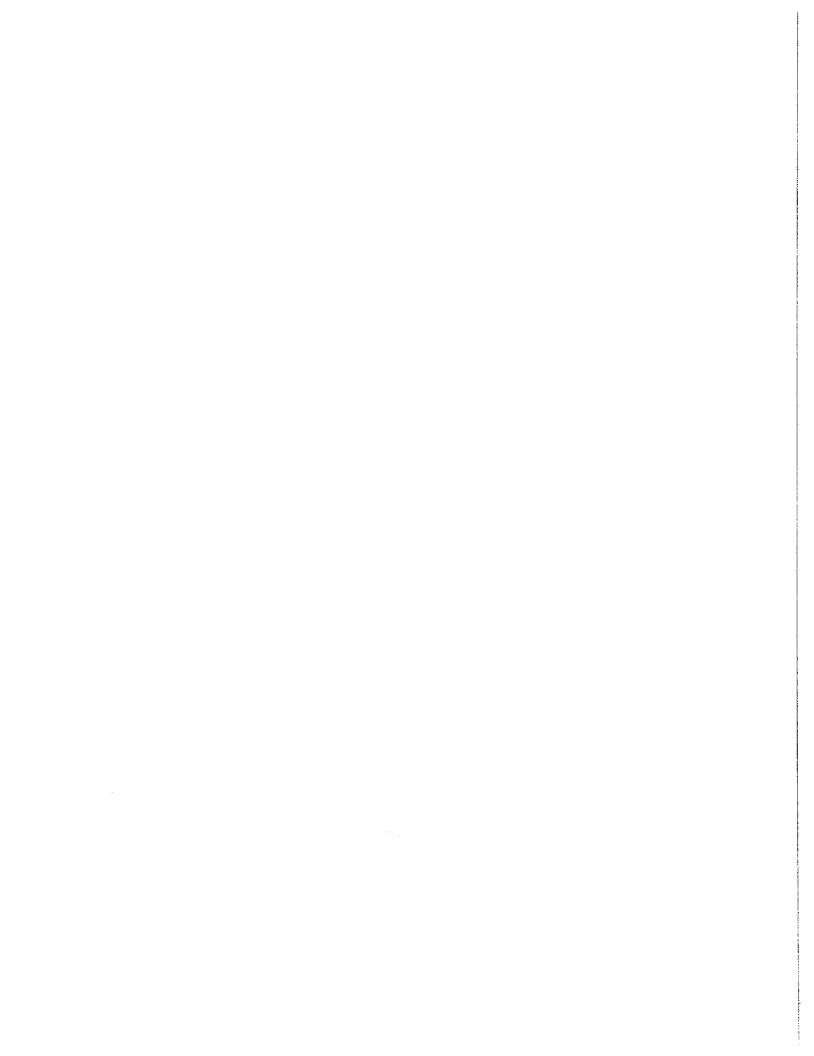

¹ ACM = acoustic current meter.

TABLE 6. (cont.)

	·					
	GMT	GMT	Sta. No.	Lat. N	Long. W	Activities
JD	Date	Time	(FOCI No.)	(dd mm.mm)	(ddd mm.mm)	and Comments
					···	
		1517	G023A	54 39.3	159 23.2	В
		1532	G023A	54 39.1	159 24.1	Methot
		1748	G024A	54 26.4	159 09.6	CTD
		1836	G024A	54 26.4	159 08.4	CTD
		1902	G024A	54 26.4	159 09.6	CTD
		1924	G024A	54 26.3	159 11.1	В
		2038	G024A	54 25.1	159 15.3	T Madhad
172	22 Tum	2139	G024A	54 24.1	159 19.4	Methot
173	22 Jun	0012	G025A G025A	54 13.8 54 14 0	158 53.4 158 52.5	CTD B
		0051 0150	G025A G025A	54 14.0 54 13.9	158 53.7	Methot
		0500	G025A G026A	54 40.6	158 37.1	Methot
		0653	G020A G027A	54 54.0	158 52.9	Methot
		0827	G027A G028A	55 06.9	159 07.8	Methot
		0956	G029A	55 17.9	159 22.5	Methot
		1144	G030A	55 31.8	159 38.0	Methot
		1224	G030A	55 32.3	159 37.4	T
		1352	G031A	55 42.7	159 49.8	Methot
		1704	G032A	55 45.0	159 06.9	Methot
		1903	G033A	55 30.6	158 51.0	CTD
		1922	G033A	55 30.5	158 51.3	В
		1950	G033A	55 31.1	158 51.5	Methot
		2144	G034A	55 18.0	158 36.6	CTD
		2209	G034A	55 18.5	158 36.5	B
174	23 Jun	2251	G034A G035A	55 19.1	158 37.1	Methot
174	25 Jun	0038 0057	G035A G035A	55 06.6 55 06.5	158 21.6 158 21.3	CTD B
		0133	G035A	55 07.3	158 21.5	Methot
		0326	G036A	54 53.4	158 05.4	CTD
		0342	G036A	54 53.7	158 05.5	B
		0408	G036A	54 54.5	158 05.1	Methot
		0632	G037A	54 55.5	157 25.1	Methot
		0805	G038A	55 06.7	157 37.5	Methot
		0939	G039A	55 19.0	157 52.9	Methot
		1114	G040A	55 31.0	158 07.7	Methot
		1201	G040A	55 32.0	158 07.7	T
		1228	G040A	55 32.6	158 07.5	В
		1411	G041A	55 44.3	158 23.1	Methot
		1558	G042A	55 56.8	158 37.0	Methot
176	0.5 Turn	2137	G043A	56 22.2	158 16.2	Methot
176	25 Jun	0356	G044A	56 10.4	158 06.7	Methot
		0556 0744	G045A G046A	55 55.9 55 43.9	157 50.6 157 34.4	Methot
		0744	G040A G047A	55 31.7	157 34.4 157 19.9	Methot Methot
		1117	G047A G048A	55 19.6	157 03.7	Methot
		1310	G049A	55 07.2	156 49.8	CTD
		-510		22 0,12	200 1710	

TABLE 6. (cont.)

ъ	GMT Date	GMT Time	Sta. No. (FOCI No.) (Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		1007	G0404	55.000	156.40.0	OFF
		1337	G049A	55 06.6	156 49.8	CTD
		1405	G049A G050A	55 06.1	156 50.0 156 07 2	Methot
		1707 1912	G050A G051A	55 12.0 55 25.2	156 07.2 156 23.1	Methot Methot
		2039	G051A G052A	55 35.9	156 37.6	Methot
		2221	G052A G053A	55 48.5	156 53.3	Methot
		2358	G054A	56 00.1	157 08.9	Methot
177	26 Jun	0139	G055A	56 12.4	157 22.5	Methot
-71	_0 ,	0758	G057A	56 44.0	157 17.8	Methot
		0914	G058A	56 40.4	157 03.5	Methot
		1120	G059A	56 24.0	156 56.4	CTD
		1202	G059A	56 23.2	156 56.1	Methot
		1330	G060A	56 12.3	156 40.7	Methot
		1510	G061A	55 59.4	156 24.9	Methot
		1644	G061A	55 55.8	156 23.4	CTD
		1829	G062A	55 47.3	156 09.4	Methot
		2051	G063A	55 36.0	155 55.1	Methot
	~~ ~	2339	G064A	55 23.4	155 40.8	CTD
178	27 Jun	0008	G064A	55 22.9	155 40.2	B, b
		0110	G064A	55 21.8	155 39.0	Methot
		1623	ACM	56 19.2	156 22.8	CTD
170	28 Jun	2133	CM5	56 21.6	156 54.6	CTD
179	28 Jun	0252 0408	CM18 CM17	56 32.4 56 38.4	156 19.2	CTD CTD
		0506	CM17 CM16	56 39.6	156 29.4 156 30.6	CTD
		0717	CM15	56 45.0	156 37.2	CTD
		0810	G071A	56 49.6	156 40.4	Methot
		0955	G071A G070A	56 37.4	156 25.2	Methot
		1138	G069A	56 24.9	156 09.3	Methot
		1318	G068A	56 13.6	155 55.1	Methot
181	30 Jun	1712	G059B	56 21.6	156 54.4	B, b
		2306	G059B (CM5)		156 54.0	CTD
182	1 Jul	0225	G061B (CM8		156 23.4	CTD
		0246	G061B `	55 56.8	156 23.0	B, b
		0533	S054A (1)	55 59.4	157 08.8	Methot (replicate #1)
		0601	S054A (2)	55 59.4	157 08.8	Methot (replicate #2)
		0628	S054A (3)	55 59.3	157 08.8	Methot (replicate #3)
	_	1231	G065A	55 37.8	155 09.6	Methot
183	2 Jul	0418	CM8	55 57.0	156 23.4	CTD
		1021	CM14	55 21.0	155 05.4	CTD
184	3 Jul	0039	CM14	55 20.4	155 12.6	CTD

3.6 FOCI-87-IV

Scientific Party: Kevin Bailey, NWAFC, Chief Scientist

Jay Clark, NWAFC Bill Rugen, NWAFC P. Ferraro, NWAFC

Gregory Green, Envirosphere B. Hanson, Envirosphere Carol DeWitt, PMEL Bill Parker, PMEL

FOCI-87-IV was conducted from 6-16 July, 1987 from the NOAA ship *Miller Freeman*. This cruise was the second leg of a two-part survey with the following objectives: (1) examine the distribution and biology of late-larval and early juvenile pollock between Kodiak Island and Unimak Pass; (2) collect information on zooplankton distribution and abundance; (3) collect temperature and salinity (CTD) data; and (4) recover 12 and deploy 4 current meter moorings.

The Methot trawl (a frame trawl with a modified IK [(Isaacs-Kidd)] depressor, 2.5 meter square steel frame, and 2×3 mm oval mesh net), proved effective in catching late larvae and early juveniles ranging in size from 10.9 to 41.5 mm standard length. A total of 92 Methot tows were completed during FOCI-87-IV, including one vertical and one depth series. During a standard tow, the net was deployed off the stern in an oblique or stepped manner. All pollock were sorted out from the Methot samples onboard, and were preserved for ageing and growth studies and stomach content analysis. In addition, four 60-cm bongo tows, three Tucker trawls, and twelve CTDs were completed. The remaining seven current meter moorings were recovered and one was deployed. Figure 8 shows the locations of stations; Table 7 provides an operations summary.

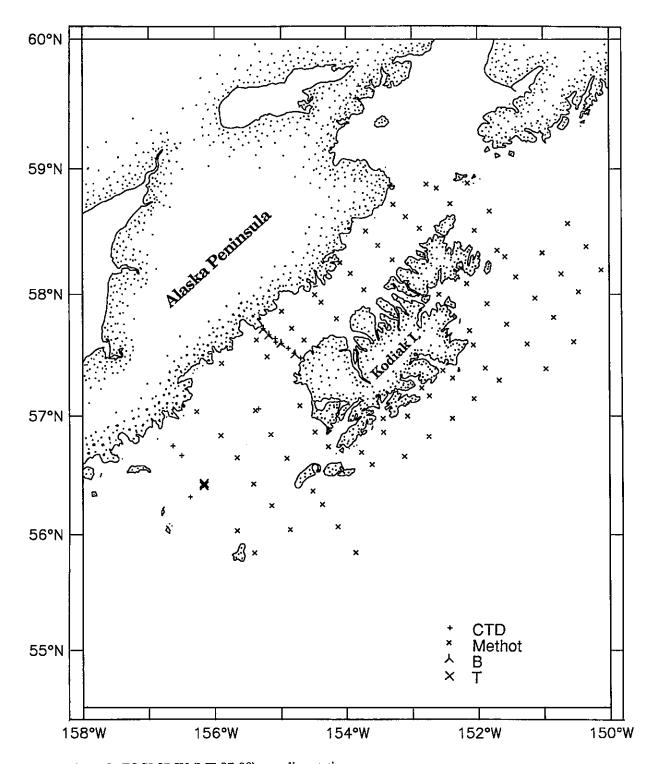


Figure 8. FOCI-87-IV (MF-87-08) sampling stations.

TABLE 7. Station locations, times, and sampling activities during FOCI-87-IV (MF-87-08). See Table 1 or footnotes for abbreviations.

Œ	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
188	7 July	1356	CM2	57 36.6	155 04.8	CTD
100	O T1	1937	G088A	57 29.4	155 12.7	Methot
189	8 July	0107 0140	CM19 G084A	57 03.6 57 02.7	155 20.4 155 23.2	CTD Methot
		0805	G064A G073A	56 50.2	155 54.6	Methot
		0624	G073A G072A	57 02.2	156 16.2	Methot
		1108	CM16	56 40.2	156 30.0	CTD
		1207	CM15	56 45.0	156 37.8	CTD
		2001	G067A	56 02.0	155 39.9	Methot
190	9 July	0052	ACM ¹	56 19.2	156 22.2	CTD
170	July	0158-1809	D069A-0	56 25.0	156 09.0	Methot (vertical series)
		1554	D069L	56 25.8	156 09.9	T
		1642	D069M	56 24.9	156 09.8	Ť
		1729	D069N	56 26.2	156 09.6	Ť
		2224	G066A	55 50.6	155 24.4	Methot
191	10 July		G077A	56 02.6	154 51.8	Methot
		0345	G078A	55 50.8	153 51.5	Methot
		0538	G079A	56 04.0	154 08.0	Methot
		0706	G080A	56 15.4	154 22.3	Methot
		0826	G081A	56 22.2	154 31.1	Methot
		1056	G076A	56 14.8	155 08.7	Methot
		1500	G092A	56 44.6	154 16.8	Methot
		2040	G091A	56 52.0	154 28.9	Methot
		2216	G090A	57 05.2	154 42.8	Methot
192	11 July		G083A	56 50.7	155 09.4	Methot
		0314	G082A	56 38.8	154 54.8	Methot
		0520	G075A	56 25.8	155 25.0	Methot
		0653	G074A	56 39.1	155 39.9	Methot
		1112	G086A	57 26.1	155 53.8	Methot
		1310	G087A	57 37.7	155 22.4	Methot
		1430	(61)	57 43.2	155 16.2	CTD
		1601	(60)	57 40.2	155 10.8	CTD
		1431	F061A	57 43.0	155 16.2	В
		1615	F060A	57 40.1	155 11.2	B
		1723	(59)	57 38.4	155 05.4	CTD
		1816	(58)	57 36.0	154 59.4	CTD
		1827	F058A	57 36.1	155 00.1	B
		1936	(57) (56)	57 33.6 57 31 3	154 53.4	CTD
		2023 2209	(56) (55)	57 31.2	154 48.0	CTD CTD
		2123	(55) F056A	57 28.8 57 30.9	154 42.0 154 47.3	В
		2310	G093A	57 37.7	154 47.5	Methot

¹ ACM = acoustic current meter.

TABLE 7. (cont.)

]D	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
193	12 July	0119 0139 0334	G094A G095A G096A	57 43.4 57 51.7 57 59.8	154 50.2 154 59.4 154 28.9	Methot Methot Methot
194	13 July	0424 0547 0800 0918 1027 1250 1406 1515 0013 0119 0231 0459 0559 0738 0859 1121 1230	G097A G098A G099A G100A G101A G104A G103A G102A G107A G106A G105A G108A G109A G110A G111A G129A G112A	57 56.1 57 48.1 58 02.2 58 10.1 58 15.3 58 16.7 58 23.6 58 30.5 58 43.2 58 37.4 58 31.8 58 52.8 58 50.9 58 53.3 58 43.5 58 40.0 58 30.8	154 23.2 154 09.0 153 43.6 153 56.0 154 05.7 153 17.6 153 30.8 153 41.8 153 16.9 153 05.6 152 53.0 152 46.8 152 37.6 152 09.1 152 25.1 151 49.0 152 02.8	Methot
195	14 July	1350 1451 1606 1751 1941 2155 0037 0204 0324 0510 0621 0745 0944 1119	G113A G113B G114A G130A G131A G132A G133A G135A G115A G115A G116A G117A G118A G119A	58 21.2 58 18.2 58 08.4 58 20.0 58 34.1 58 23.0 58 11.8 58 01.2 58 09.9 57 58.1 57 48.7 57 36.8 57 23.5 57 35.7	151 42.1 151 35.0 151 25.2 151 00.9 150 37.9 150 21.0 150 07.3 150 28.2 150 43.9 151 07.6 150 50.8 150 32.6 150 57.8 151 15.0	Methot
196	15 July	1241 1408 1539 1645 1848 2123 2236 0002 0150 0254 0442 0522	G120A G121A G122A G123A G124A G125A G126A G127A G136A G128A G138A G137A	57 45.4 57 55.4 58 05.2 58 12.7 58 00.0 57 42.3 57 35.3 57 23.9 57 19.0 57 22.7 57 14.0 57 10.1	151 33.6 151 51.4 152 10.0 152 15.2 152 35.5 152 07.5 152 04.0 151 53.1 152 23.2 152 31.9 152 51.2 152 44.3	Methot

TABLE 7. (cont.)

Ъ	GMT Date	GMT Time	Sta. No. (FOCI No.)	Lat. N (dd mm.mm)	Long. W (ddd mm.mm)	Activities and Comments
		0700 0840	G139A G141A	57 00.0 56 58.8	153 04.2 153 26.2	Methot Methot
		0932 1104 1200 1422	G140A G142A G143A G144A	56 51.9 56 41.8 56 35.7 56 39.8	153 26.0 153 46.1 153 36.4 153 07.0	Methot Methot Methot
		1603 1735	G145A G146A	56 49.8 56 58.9	152 44.8 152 23.5	Methot Methot Methot
1	15-16 July	1914 2058 2329-0046	G147A G148A D119A-B	57 08.7 57 17.8 57 35.0	152 03.6 151 40.5 151 15.0	Methot Methot Methot (vertical series)

4. MOORED INSTRUMENTS SUMMARY

Fifteen moored instrument arrays were deployed (Table 8) in 1987 for the following studies: (1) continuation of long-term time series at mooring stations 2, 5, 8, and 14; (2) lateral variability of the Alaska Coastal Current (ACC) at stations 15-19; (3) relationship between winds and surface currents at PEGGY; and (4) exchange of water between the Gulf of Alaska and Bering Sea through three Aleutian Island passes at BG-701, 702, and 703. Exact mooring locations are given in Table 8. Approximate locations can be seen in Figure 2, FOCI master station grid.

Moorings recovered (Table 9) were conducted in July and included the four long-term moorings and the five moorings for lateral variability of the ACC.

TABLE 8. 1987 Mooring deployments.

	- ""			Deplo	yment		
Station	Location (N,W)	Water depth (M)	Loran rates	Yr/JD [*]	Time (GMT)	# of Meters	Pressure Gauge
8615	56 44.91 156 37.32	139	X18701.1 Y32958.1 Z44721.0	86/292	0452	2	1
8616	56 40.19 156 30.05	192	X18703.2 Y32966.3 Z44678.4	86/292	0332	4	1
8617	56 38.60 156 28.97	207	X18678.9 Y32971.5 Z44673.2	86/292	0006	4	1
8618	56 32.63 156 19.40	225	X18673.4 Y32980.3 Z44618.6	86/291	2151	5	1
8619	57 02.43 155 21.80	262	X18724.0 Y32741.9 Z44205.7	86/292	1815	4	0
PEGGY ¹ (MET ²)	¹ 57 00.05) 155 57.85	243	Y32814.8 Z44443.2	87/103	0726	0	0
PEGGY (ACM ³		242	Y33042.1 Z44662.4	87/103	1817	4	0
PEGGY (ADCP#	56 19.88 2) 156 23.05	252	Y33042.9 Z44661.8	87/103	2118	1	0
BG-701	54 18.33 164 46.19	81	X18199.2 Y34595.7 Z47866.8	87/155	2205	2	0
BG-702	52 24.40 171 28.10	433	X16558.4 Y35137.9 Z49284.5	87/156	2245	3	0

¹ PEGGY = station consisting of MET, ACM, and ADCP moorings.

² MET = meteorological buoy.

³ ACM = acoustic current meter.

TABLE 8. (cont.)

Station	Location (N,W)	Water depth (M)	Loran rates	Deploy Yr/JD	yment Time (GMT)	# of Meters	Pressure Gauge
BG-703	51 46.09 179 30.67	1189	X13756.1 Y34798.1 Z49939.2	87/157	0220	4	0
8702	57 36.91 155 05.75	258	X18734.4 Y32550.1 Z44099.0	87/188	1832	5	1
8705	56 21.65 156 54.38	127	X18670.4 Y33095.4 Z44860.8	87/181	2246	3	1
8708	55 57.01 156 22.25	223	X18643.6 Y33139.2 Z44705.9	87/182	0352	5	1
8714	55 20.79 155 12.00	1185	Y33144.8 Z44384.3	87/184	0001	5	0

TABLE 9. 1987 Mooring recoveries.

			Reco	overy		
Station	Location (N,W)	Water depth (M)	Yr/JD	Time (GMT)	# of Meters	Pressure Gauge
8602	57 36.55 155 04.02	259	87/188	1533	5 (2 lost)	1 (lost)
8605	56 21.61 156 54.79	126	87/189	2135	3	1
8608	55 56.89 156 23.18	225	87/182	2327	5 (2 lost)	1
8614	55 21.36 155 04.45	1322	87/183	1632	3 (1 lost)	1
8615	56 45.99 156 37.29	139	87/189	1335	2	1
8616	56 41.72 156 28.81	192	87/189	1540	4	1
8617	56 36.77 156 30.07	207	87/179	2214	4	1
8618	56 29.85 156 21.54	225	87/179	1924	5	1 (lost)
8619	57 03.90 155 20.80	262	87/189	2255	4	0
PEGGY (MET)	56 58.53 155 57.34		87/189	0452	0	0
PEGGY (ACM)	56 19.94 156 23.04	247	87/189	2358	4	0
PEGGY (ADCP#2)	56 19.43 156 22.95	243	87/178	1834	1	0

5. REMOTE WEATHER STATION SUMMARY

This year saw the continuation of the effort to measure local winds south of Shelikof Strait that was begun in late FY 1986. There were five automated, satellite-transmitting weather stations maintained at Wide Bay, Ugaiushak Island, Chowiet Island in the Semidis, Chirikof Island, and Tugidak Island. Figure 9 is a map showing these locations; Table 10 gives specific details about them. A sixth station was installed in the Semidis halfway through the year to augment data return from that site. The weather stations were off-the-shelf equipment manufactured by the Handar Corporation and proved inadequate for the environment in their initial design. As a consequence, data return during the first half of 1987 was poor. To insure a near-continuous time series at Ugaiushak Island (which has been instrumented since 1985), an older, field-proven Synergetics weather station replaced the non-functioning station in December 1986. The Wide Bay and Chirikof Island stations were damaged by animals. Full details of station maintenance during the year are offered in the chronology below. Figure 10 presents the periods of data return from all six stations at the five sites.

METNET Chronology

1986 Oct 11	Ugaiushak RH and temp fail after a period of intermittency.
-, -, -,	

1986 Nov 27 Wide Bay ceases operation due to low power supply.

Galasso, Proctor replace Ugaiushak Island Handar station (which had blown over) with Synergetics equipment @ 1130 AST. Synergetics 3400 modules: 3401A - 2384A000214, 3241A - 2884A00209, 3489A - 0683A00159, 3452A - 2186A00335. R.M. Young 05103 wind monitor (1126), YSI 44212 thermistor (8604), AIR DB-3A digital barometer (0310 8605211011). SAFT battery pack in marine plywood box. 3 m tower. Station elevation from hand-held altimeter is 27 m. First data 3522246. Note: Wind speed thresh-hold of 2.3 m/s.

1986 Dec 18 Ugaiushak temp fails.

1986 Dec 19 Chirikof station dies due to low power.

1987 Jan 27 Tugidak transmissions become intermittent.

1987 Feb 4 Semidi tower blows over and winds fail.

1987 Feb 14 Tugidak transmissions become regular.

DeWitt, Proctor make maintenance visit to Wide Bay @ 2200 GMT. Anchored tower, changed DCP to 1022, Setra pressure transducer to 107966 (both ex-Ugaiushak). No RAM dump. Repaired or replaced bear damage to battery box, cable, antenna (1726) and cable. Replaced wind cross-arm, replaced wind direction with 809, replaced temp/RH filter and radiation shield.

1987 Mar 17	DeWitt, Proctor made maintenance visit to Chirikof Island @ 2100 GMT.					
	Anchored tower, changed DCP to 1021, Setra pressure sensor to 107970 (both					
	ex-Wide Bay). No RAM dump. Replaced batteries and cable with those from					
	Wide Bay. Replaced wind speed with 845. Temp/RH removed.					
1987 Mar 18	Chirikof wind speed and RH fail.					
1987 Mar 18	DeWitt, Proctor visit Tugidak Island @ 2100 GMT. Anchored tower. RAM					
	dump, replaced two batteries, temp/Rh removed.					
1987 Mar 21	Chirikof wind speed returns.					
1987 Mar 21	Wide Bay wind speed goes intermittent.					
1987 Mar 23	DeWitt, Proctor make maintenance visit to Semidi Island @ 2200 GMT.					
	Tower had fallen over; erected (see Proctor, 1989) and anchored new tower.					
	RAM dump. Replace wind speed with 840, reshape antenna, remove					
	temp/RH.					
1987 Mar 23	DeWitt, Proctor install Handar station Semidi 2 about 13 m west of first					
	station @ 2200 GMT. Handar DCP (1025), Setra 270B pressure transducer					
(107971), Handar wind speed (745), Handar wind direction (794), Hand						
temp/RH (718) with new radiation shield, Handar directional antenna						
	Wind cross arm apparently misaligned as Semidi 2 wind directions agree with					
	Semidi wind directions which are known to be in error (Proctor, 1989).					
1987 Mar 25	Chirikof temp fails.					
1987 Jun 15	Semidi 2 RH fails.					
1987 Jun 25	Wide Bay RH intermittent.					
1987 Aug 16	Chirikof station dies.					
1987 Sep 23	Semidi 2 wind speed fails.					
1987 Sep 27	GOES dial-up problems for several days.					

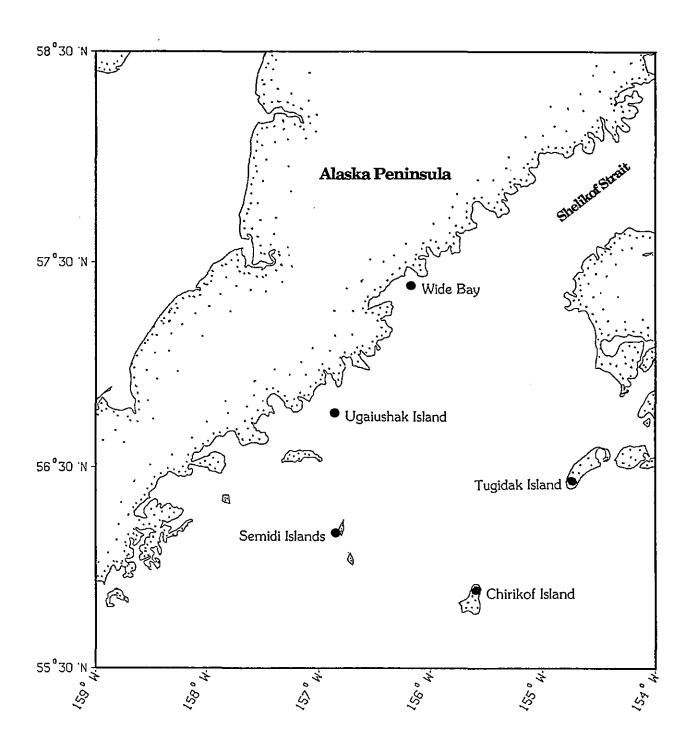


Figure 9. METNET site locations.

TABLE 10. METNET Site Information.

Station	Position (deg & min)	Elevation (m)
Wide Bay	57 25.0N, 156 10.9W	20.6
Ugaiushak Island	56 47.6N, 156 51.1W	27.9
Semidi Island	56 03.9N, 156 41.8W	67.0
Tugidak Island	56 25.6N, 154 42.6W	39.8
Chirikof Island	55 54.6N, 155 34.1W	35.2

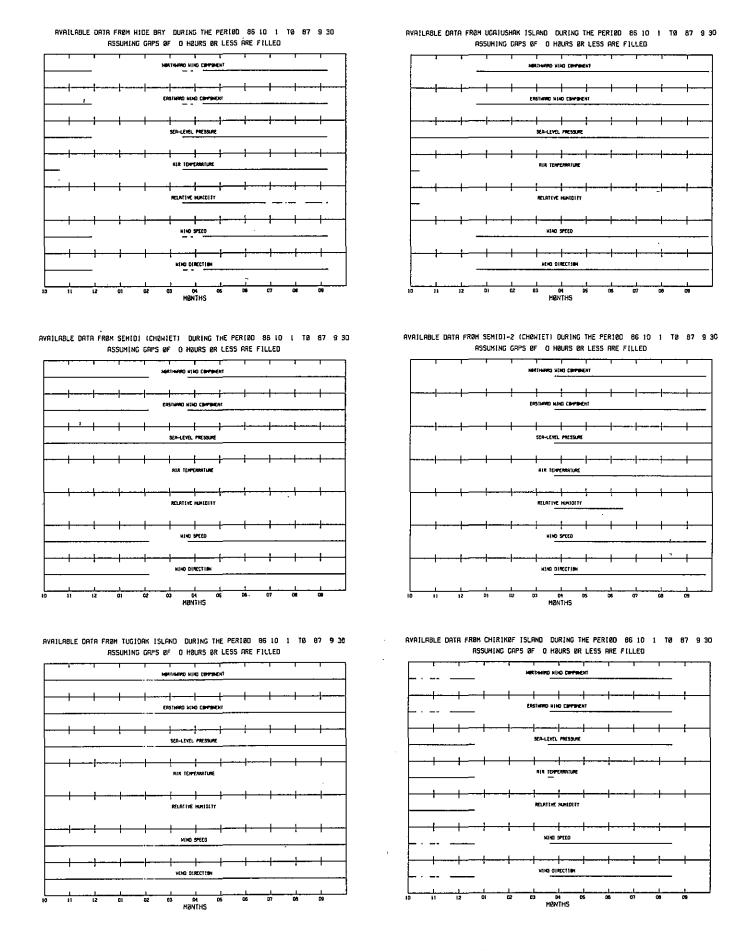


Figure 10. METNET station data return periods.

6. DRIFTER SUMMARY

During the 1987 field season, 21 satellite-tracked drifting buoys were deployed -18 drogued at 40 meters and 3 drogued at 200 meters. The drifters were deployed at various dates, times and locations along line 8 to gather statistics on the trajectories of water parcels originating in the vicinity of this large pollock spawning location. Table 11 shows dates and drogue depths for each drifter.

TABLE 11. Time periods and locations of drifter buoys released during 1987 FOCI field operations. An X gives the buoy location, where S is Shelikof Strait, A is the Alaska Stream, and B is the Bering Sea. All buoys were released in Shelikof Strait.

Buoy Number	Start Date	End Date	Length (Days)	Location S A B	Drogue Depth (m)
7228	4/03/87	4/03/87	0	X	200
7224	4/12/87	9/10/87	151	X	200
7225	4/12/87	7/29/87	108	ХX	40
7226	4/12/87	8/15/87	125	ΧX	40
7227	4/12/87	8/15/87	125	X	40
7229	4/12/87	4/14/87	2	X	40
7230	4/12/87	6/10/87	59	X	40
7235	4/12/87	4/13/87	1	X	40
7236	4/12/87	8/11/87	121	X	40
7237	4/12/87	8/11/87	121	ХX	40
7238	4/16/87	4/16/87	0	X	200
7220	5/20/87	6/18/87	29	X	40
7221	5/20/87	6/29/87	40	X	40
7223	5/20/87	5/20/87	0	X	40
7233	5/20/87	9/17/87	121	X X X	40
7239	5/20/87	5/31/87	11	X	40
7240	5/20/87	10/20/87	153	X	40
7241	5/20/87	9/26/87	129	ХX	40
7242	5/20/87	8/08/87	80	X	40
7243	5/20/87	8/21/87	93	хх	40
7244	5/20/87	6/02/87	13	X	40

7. SATELLITE IMAGE SUMMARY

A search for imagery during the 1987 field season was conducted at the NOAA/NESDIS Satellite Data Services Division (SDSD) in Suitland, MD. A total of 48 local-area-coverage (LAC) or High Resolution Picture Transmission (HRPT) images were selected. Tapes of the images were ordered and will be processed and archived at PMEL during FY 1988. Additionally, 58 Gilmore Creek (GIL) format images were obtained from the Gilmore Creek, AK receiving station. These are 8-bit data tapes, as opposed to the LAC and HRPT data tapes which contain 10-bit data. These tapes will also be processed and archived during FY 1988. Imagery was selected on the basis of clear skies over Shelikof Strait and the surrounding area. The time period searched included February to May, 1987 for the Gilmore data and mid-March to May for the SDSD data. A list of all of the data selected from both sources can be found in Table 12. An example of the processed 10-bit data can be seen in Figure 11.

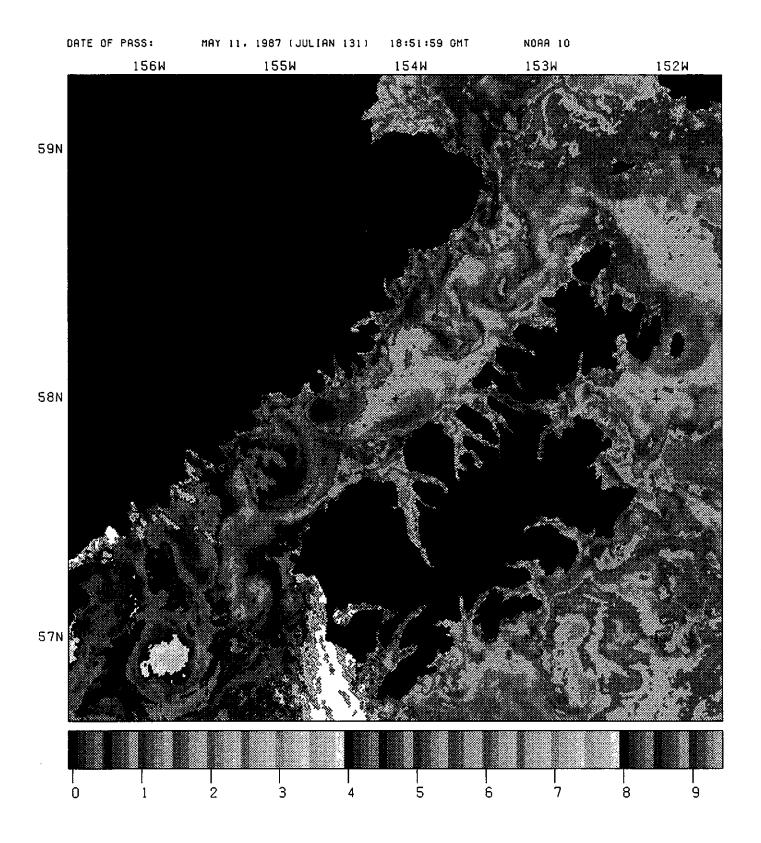


Figure 11. Satellite image sample.

TABLE 12. Tapes processed and images produced for the five study areas.

	JD	Date	Orbit #	Type of tape ¹	Time
1987	043	2/12	10/2098	GIL	05:13:33
	056	2/25	9/11350 10/2283 9/11358 10/2291	GIL GIL GIL	00:55:37 05:31:59 14:44:01 19:14:39
	057	2/26	9/11364 10/2297 9/11372 10/2305	GIL GIL GIL	00:44:14 05:09:37 14:33:12 18:52:55
	058	2/27	9/11378 10/2311 9/11386 10/2319	GIL GIL GIL	00:33:21 04:48:21 14:22:23 18:31:08
	059	2/28	9/11392 10/2325 9/11400 10/2333	GIL GIL GIL	00:22:54 04:26:11 14:11:37 18:09:30
) 1	060	3/1	9/11406 10/2339 10/2340 10/2347	GIL GIL GIL GIL GIL	00:12:05 04:03:53 05:44:30 17:47:46
	061	3/2	10/2348 9/11420 10/2354 9/11428 10/2362 9/11434	GIL GIL GIL GIL GIL	19:28:17 00:00:43 05:22:42 13:49:55 19:06:28 23:49:06
	062	3/3	10/2368	GIL	05:01:44
	063	3/4	9/11449	GIL	01:20:03
	091	4/1	9/11857	SDSD	23:29:25
	092	4/2	9/11858	SDSD	01:10:19
	094	4/4	9/11894	SDSD	14:44:15

¹ GIL = Gilmore Creek 8-bit data. SDSD = NOAA/NESDIS Satellite Data Service Division 10-bit data.

TABLE 12. (cont.)

OSD 00:37:44 OSD 00:37:10 OSD 18:35:35 OSD 00:16:08
DSD 00:37:10 18:35:35 OSD 00:16:08
-an 1010
DSD 19:10:30
DSD 18:48:51 DSD 23:43:49 IL 23:41:53
OSD 01:24:54 IL 01:24:14 IL 13:32:24 OSD 18:27:07 IL 18:20:04
OSD 01:14:00 IL 04:14:24 IL 13:21:27 IL 15:02:34 OSD 18:01:59 IL 17:58:14
OSD 01:01:53 IL 01:01:53 IL 03:52:17 IL 05:33:36 IL 14:51:40
OSD 00:51:23
OSD 17:53:59
OSD 00:08:51 OSD 19:11:59 OSD 23:57:03
OSD 01:17:01 OSD 18:06:59 IL 18:03:13

TABLE 12. (cont.)

JD	Date	Orbit#	Type of tape ¹	Time
111	4/21	9/12126 9/12126 10/3064	SDSD GIL GIL	01:06:16 01:06:18 03:57:30
114	4/24	10/3115	SDSD	18:21:59
115	4/25	9/12182 9/12182	SDSD GIL	00:23:19 00:23:19
117	4/27	9/12218 10/3158	SDSD SDSD	13:53:59 18:54:59
122	5/2	9/12281	SDSD	00:48:33
123	5/3	9/12295	SDSD	00:37:23
124	5/4	9/12309	SDSD	00:26:59
125	5/5	9/12323	SDSD	00:00:00
126	5/6	9/12337	SDSD	00:04:30
127	5/7	10/3300	SDSD	18:41:59
131	5/11	10/3357 10/3357	SDSD GIL	18:51:59 18:48:25
132	5/12	9/12422 10/3371	GIL SDSD	00:41:26 18:33:00
133	5/13	10/3385	GIL	18:04:17
134	5/14	9/12450 9/12450 10/3391 10/3392 9/12458	SDSD GIL GIL GIL GIL	00:19:54 00:19:51 03:58:44 05:40:18 14:08:31
136	5/16	10/3428 9/12492	SDSD SDSD	18:46:14 23:47:33
137	5/17	9/12493	SDSD	01:28:40
144	5/24	9/12591	SDSD	00:12:43
145	5/25	9/12605	SDSD	00:01:57

TABLE 12. (cont.)

JD	Date	Orbit#	Type of tape ¹	Time
147	5/27	9/12634	SDSD	01:21:24
148	5/28	9/12648	SDSD	01:10:31
149	5/29	9/12662 10/3613	SDSD SDSD	00:59:39 19:04:14
150	5/30	9/12676 10/3619	SDSD SDSD	00:48:48 04:53:13
151	5/31	9/12690	SDSD	00:38:10

8. ACKNOWLEDGMENTS

The authors would like to thank all the chief scientists and support scientists mentioned on each cruise. Thanks also to S.A. Macklin for the METNET information; A.C. Vastano, T. Vance, and M. Schall for satellite information; and R.L. Whitney for the word processing of the manuscript.

9. REFERENCES

- Nelson, M.O. and E.P. Nunnallee, 1986: Results of acoustic-midwater trawl surveys for walleye pollock in Shelikof Strait, 1985. In: Condition of groundfish resources of the Gulf of Alaska region as assessed in 1985. NOAA Tech. Memo. NMFS F/NWC-106, 309 pp.
- Ortner, P.B., L.C. Hill and H.E. Edgarton, 1981: In-situ silhouette photography of Gulf Stream zooplankton. *Deep-Sea Res.*, 28A, 1569–1576.
- Posgay, J.A. and R.R. Marak, 1980: The MARMAP bongo zooplankton sampler. *J. Northwest Atl. Fish. Sci.*, 1, 91–99.
- Proctor, P.D., 1989: Fisheries Oceanography Coordinated Investigations Field Operations 1988. NOAA Data Report ERL PMEL-25, 69 pp.
- Smith, P.E., and S. Richardson, 1977: Standard techniques for pelagic fish egg and larva surveys. FAO Tech. Publ. 75, 100 pp.
- Wiebe, P.H., K.H. Burt, S.H. Boyd and A.W. Morton, 1976: A multiple opening/closing net and environmental sensing system for sampling zooplankton. *J. Mar. Res.*, 34, 313–326.
- Whitledge, R., S. Malloy, C. Patton, and C. Wirick, 1981: Automated nutrient analyses in seawater. BNL Rep. 51398, Brookhaven National Laboratory, Upton, NY, 216 pp.
- Yentsch, C.S., and D.W. Menzel, 1963: A method for the determination of phytoplankton chlorophyll and phaeophyton by fluorescence. *Deep-Sea Res.*, 10, 221–231.